Lissencephaly: Update on diagnostics and clinical management

Published:October 06, 2021DOI:


      • Lissencephaly is spectrum of malformations of cortical development including agyria, pachygyria and subcortical band heterotopia
      • Lissencephaly is a heterogeneous genetic disorder with more than 30 associated genes
      • Intractable epilepsy is a major clinical challenge with only symptomatic therapy available to date


      Lissencephaly represents a spectrum of rare malformations of cortical development including agyria, pachygyria and subcortical band heterotopia. The progress in molecular genetics has led to identification of 31 lissencephaly-associated genes with the overall diagnostic yield over 80%. In this review, we focus on clinical and molecular diagnosis of lissencephaly and summarize the current knowledge on histopathological changes and their correlation with the MRI imaging. Additionally we provide the overview of clinical follow-up recommendations and available data on epilepsy management in patients with lissencephaly.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to European Journal of Paediatric Neurology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Di Donato N.
        • et al.
        Lissencephaly: expanded imaging and clinical classification.
        Am. J. Med. Genet. 2017; 173: 1473-1488
        • Oegema R.
        • et al.
        International consensus recommendations on the diagnostic work-up for malformations of cortical development.
        Nat. Rev. Neurol. 2020;
        • Lee S.
        • et al.
        Bi-allelic loss of human APC2, encoding adenomatous polyposis coli protein 2, leads to lissencephaly, subcortical heterotopia, and global developmental delay.
        Am. J. Hum. Genet. 2019; 105: 844-853
        • Tsai M.H.
        • et al.
        Pathogenic variants in CEP85L cause sporadic and familial posterior predominant lissencephaly.
        Neuron. 2020; 106: 237-245 e8
        • Walker A.E.
        Archiv. Neurol. & Psychiatr. 1942; 48: 13-29
        • Dobyns W.B.
        • Leventer R.J.
        • Guerrini R.
        Malformations of cortical development.
        in: Swaiman K.F. Swaiman's Pediatric Neurology. sixth ed. Elsevier, 2018
        • Cushion T.D.
        • et al.
        Overlapping cortical malformations and mutations in TUBB2B and TUBA1A.
        Brain : J. Neurol. 2013; 136: 536-548
        • Bahi-Buisson N.
        • et al.
        The wide spectrum of tubulinopathies: what are the key features for the diagnosis?.
        Brain : J. Neurol. 2014; 137: 1676-1700
        • Di Donato N.
        • et al.
        Lissencephaly: expanded imaging- and molecular pathway-based classification with a new category with autosomal recessive inheritance.
        in: David W. Smith Workshop on Malformations and Morphogenesis. 2015 (Harbourtowne Golf Resort and Conference Center in St. Michaels, MD)
        • Oegema R.
        • et al.
        Recognizable cerebellar dysplasia associated with mutations in multiple tubulin genes.
        Hum. Mol. Genet. 2015; 24: 5313-5325
        • Dobyns W.B.
        The clinical patterns and molecular genetics of lissencephaly and subcortical band heterotopia.
        Epilepsia. 2010; 51: 5-9
        • Di Donato N.
        • et al.
        Mutations in CRADD result in reduced caspase-2-mediated neuronal apoptosis and cause megalencephaly with a rare lissencephaly variant.
        Am. J. Hum. Genet. 2016; 99: 1117-1129
        • Harel T.
        • et al.
        Homozygous null variant in CRADD, encoding an adaptor protein that mediates apoptosis, is associated with lissencephaly.
        Am. J. Med. Genet. 2017; 173: 2539-2544
        • Sheikh T.I.
        • et al.
        Biallelic mutations in the death domain of PIDD1 impair caspase-2 activation and are associated with intellectual disability.
        Transl. Psychiatry. 2021; 11: 1
        • Guerrini R.
        • et al.
        Nonsyndromic mental retardation and cryptogenic epilepsy in women with doublecortin gene mutations.
        Ann. Neurol. 2003; 54: 30-37
        • Dobyns W.B.
        • Das S.
        LIS1-Associated lissencephaly/subcortical band heterotopia.
        in: GeneReviews R.A. Pagon Seattle, 1993 (WA)
        • Verloes A.
        • et al.
        Baraitser-Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases.
        Eur. J. Hum. Genet. 2015; 23: 292-301
        • Uyanik G.
        • et al.
        ARX mutations in X-linked lissencephaly with abnormal genitalia.
        Neurology. 2003; 61: 232-235
        • Becker L.L.
        • et al.
        The clinical-phenotype continuum in DYNC1H1-related disorders-genomic profiling and proposal for a novel classification.
        J. Hum. Genet. 2020; 65: 1003-1017
        • Di Donato N.
        • et al.
        Analysis of 17 genes detects mutations in 81% of 811 patients with lissencephaly.
        Genet. Med. 2018; 20: 1354-1364
        • Leventer R.J.
        • Guerrini R.
        • Dobyns W.B.
        Malformations of cortical development and epilepsy.
        Dialogues Clin. Neurosci. 2008; 10: 47-62
        • Guerrini R.
        • Filippi T.
        Neuronal migration disorders, genetics, and epileptogenesis.
        J. Child Neurol. 2005; 20: 287-299
        • Guerrini R.
        • Sicca F.
        • Parmeggiani L.
        Epilepsy and malformations of the cerebral cortex.
        Epileptic Disord. 2003; 5: S9-S26
        • Herbst S.M.
        • et al.
        LIS1-associated classic lissencephaly: a retrospective, multicenter survey of the epileptogenic phenotype and response to antiepileptic drugs.
        Brain Dev. 2016; 38: 399-406
        • Guerrini R.
        • Carrozzo R.
        Epilepsy and genetic malformations of the cerebral cortex.
        Am. J. Med. Genet. 2001; 106: 160-173
        • Romaniello R.
        • et al.
        Epilepsy in tubulinopathy: personal series and literature review.
        Cells. 2019; 8
        • Kolbjer S.
        • et al.
        Lissencephaly in an epilepsy cohort: molecular, radiological and clinical aspects.
        Eur. J. Paediatr. Neurol. 2021; 30: 71-81
        • Guerrini R.
        • Dobyns W.B.
        Malformations of cortical development: clinical features and genetic causes.
        Lancet Neurol. 2014; 13: 710-726
        • Lerman-Sagie T.
        • Leibovitz Z.
        Malformations of cortical development: from postnatal to fetal imaging.
        Can. J. Neurol. Sci. 2016; 43: 611-618
        • Choi J.J.
        • et al.
        Fetal magnetic resonance imaging: supratentorial brain malformations.
        Pediatr. Radiol. 2020; 50: 1934-1947
        • Group E.W.
        Role of prenatal magnetic resonance imaging in fetuses with isolated mild or moderate ventriculomegaly in the era of neurosonography: international multicenter study.
        Ultrasound Obstet. Gynecol. 2020; 56: 340-347
        • Williams F.
        • Griffiths P.D.
        In utero MR imaging in fetuses at high risk of lissencephaly.
        Br. J. Radiol. 2017; 90: 20160902
        • Griffiths P.D.
        • et al.
        Changes in appearance of cortical formation abnormalities in the foetus detected on sequential in utero MR imaging.
        Eur. Radiol. 2021; 31: 1367-1377
        • Erhardt A.
        Ueber Agyric und Heterotopie im Grosshirn.
        Allg Ztschr f Psychiat. 1914; : 656-670
        • Bielschowsky M.
        Über die Oberflächengestaltung des Grosshirnmantels bei Pachygyrie, Microgyrie und bei normaler Entwicklung.
        J. Psychol. Neurol. Lpz. 1923; : 29-76
        • Brock S.
        • Cools F.
        • Jansen A.C.
        Neuropathology of genetically defined malformations of cortical development-A systematic literature review.
        Neuropathol. Appl. Neurobiol. 2021;
        • Forman M.S.
        • et al.
        Genotypically defined lissencephalies show distinct pathologies.
        J. Neuropathol. Exp. Neurol. 2005; 64: 847-857
        • Friocourt G.
        • et al.
        Role of cytoskeletal abnormalities in the neuropathology and pathophysiology of type I lissencephaly.
        Acta Neuropathol. 2011; 121: 149-170
        • Viot G.
        • et al.
        Neocortical neuronal arrangement in LIS1 and DCX lissencephaly may be different.
        Am. J. Med. Genet. 2004; 126A: 123-128
        • Berg M.J.
        • et al.
        X-linked female band heterotopia-male lissencephaly syndrome.
        Neurology. 1998; 50: 1143-1146
        • Marcorelles P.
        • et al.
        Evidence for tangential migration disturbances in human lissencephaly resulting from a defect in LIS1, DCX and ARX genes.
        Acta Neuropathol. 2010; 120: 503-515
        • Coman D.
        • et al.
        X-linked lissencephaly with absent corpus callosum and abnormal genitalia: an evolving multisystem syndrome with severe congenital intestinal diarrhea disease.
        Child Neurol. Open. 2017; 4 (2329048X17738625)
        • Fallet-Bianco C.
        • et al.
        Mutations in tubulin genes are frequent causes of various foetal malformations of cortical development including microlissencephaly.
        Acta Neuropathol. Commun. 2014; 2: 69
        • Jossin Y.
        Reelin functions, mechanisms of action and signaling pathways during brain development and maturation.
        Biomolecules. 2020; 10
        • Alazami A.M.
        • et al.
        Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families.
        Cell Rep. 2015; 10: 148-161
        • Kato M.
        • et al.
        Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation.
        Hum. Mutat. 2004; 23: 147-159
        • Cushion T.D.
        • et al.
        Overlapping cortical malformations and mutations in TUBB2B and TUBA1A.
        Brain. 2013; 136: 536-548
        • Smits D.J.
        • et al.
        Biallelic DAB1 variants are associated with mild lissencephaly and cerebellar hypoplasia.
        Neurol. Genet. 2021; 7: e558
        • Valence S.
        • et al.
        RELN and VLDLR mutations underlie two distinguishable clinico-radiological phenotypes.
        Clin. Genet. 2016; 90: 545-549
        • Barth P.G.
        • et al.
        Familial lissencephaly with extreme neopallial hypoplasia.
        Brain Dev. 1982; 4: 145-151
        • Kroon A.A.
        • et al.
        Lissencephaly with extreme cerebral and cerebellar hypoplasia. A magnetic resonance imaging study.
        Neuropediatrics. 1996; 27: 273-276
        • Miyata H.
        • et al.
        Lissencephaly with agenesis of corpus callosum and rudimentary dysplastic cerebellum: a subtype of lissencephaly with cerebellar hypoplasia.
        Acta Neuropathol. 2004; 107: 69-81
        • Urquhart J.E.
        • et al.
        DMRTA2 (DMRT5) is mutated in a novel cortical brain malformation.
        Clin. Genet. 2016; 89: 724-727
        • Alkuraya F.S.
        • et al.
        Human mutations in NDE1 cause extreme microcephaly with lissencephaly [corrected].
        Am. J. Hum. Genet. 2011; 88: 536-547
        • Mishra-Gorur K.
        • et al.
        Mutations in KATNB1 cause complex cerebral malformations by disrupting asymmetrically dividing neural progenitors.
        Neuron. 2014; 84: 1226-1239
        • Abdel-Salam G.M.
        • et al.
        Further delineation of the clinical spectrum in RNU4ATAC related microcephalic osteodysplastic primordial dwarfism type I.
        Am. J. Med. Genet. 2013; 161A: 1875-1881
        • Mitani T.
        • et al.
        Bi-allelic pathogenic variants in TUBGCP2 cause microcephaly and lissencephaly spectrum disorders.
        Am. J. Hum. Genet. 2019; 105: 1005-1015
        • Harding B.N.
        • et al.
        Mutations in citron kinase cause recessive microlissencephaly with multinucleated neurons.
        Am. J. Hum. Genet. 2016; 99: 511-520
        • Shaheen R.
        • et al.
        Mutations in CIT, encoding citron rho-interacting serine/threonine kinase, cause severe primary microcephaly in humans.
        Hum. Genet. 2016; 135: 1191-1197
        • Brock S.
        • Dobyns W.B.
        • Jansen A.
        R)) Adam M.P. PAFAH1B1-Related Lissencephaly/Subcortical Band Heterotopia. GeneReviews. Seattle, 1993 (WA)
        • Hehr U.
        • GeneReviews
        • et al.
        R)) Adam M.P. DCX-related Disorders. Seattle, 1993 (WA)
        • Boycott K.M.
        • MacDonald S.K.
        • Parboosingh J.S.
        • GeneReviews
        VLDLR cerebellar hypoplasia.
        in: R)) Adam M.P. Seattle, 1993 (WA)
        • Verloes A.
        • et al.
        Baraitser-winter cerebrofrontofacial syndrome.
        in: R)) Adam M.P. GeneReviews. Seattle, 1993 (WA)
        • Bahi-Buisson N.
        • Cavallin M.
        • GeneReviews
        Tubulinopathies overview.
        in: R)) Adam M.P. Seattle, 1993 (WA)