Advertisement

3T MRI signal intensity profiles and thicknesses of transient zones in human fetal brain at mid-gestation

  • Ivana Pogledic
    Affiliations
    Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
    Search for articles by this author
  • Ernst Schwartz
    Affiliations
    Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
    Search for articles by this author
  • Mihaela Bobić-Rasonja
    Affiliations
    University of Zagreb, School of Medicine, Croatian Institute for Brain Research, Section for Developmental Neuroscience, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia

    University of Zagreb, School of Medicine, Department of Biology, Šalata 3, 10000, Zagreb, Croatia
    Search for articles by this author
  • Christian Mitter
    Affiliations
    Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
    Search for articles by this author
  • Pascal Baltzer
    Affiliations
    Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
    Search for articles by this author
  • Gerlinde Maria Gruber
    Affiliations
    Department of Anatomy and Biomechanics, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
    Search for articles by this author
  • Marija Milković-Periša
    Affiliations
    University Hospital Centre Zagreb, Department of Pathology and Cytology, Petrova 13, 10000, Zagreb, Croatia

    University of Zagreb, School of Medicine, Institute of Pathology, Šalata 10, 10000 Zagreb, Croatia
    Search for articles by this author
  • Christine Haberler
    Affiliations
    Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
    Search for articles by this author
  • Dieter Bettelheim
    Affiliations
    Division of Obstetrics and Feto-Maternal Medicine, Department of Obstetrics and Gynecology, Medical University of Vienna, 1090, Vienna, Austria
    Search for articles by this author
  • Gregor Kasprian
    Affiliations
    Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
    Search for articles by this author
  • Miloš Judaš
    Affiliations
    University of Zagreb, School of Medicine, Croatian Institute for Brain Research, Section for Developmental Neuroscience, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia
    Search for articles by this author
  • Daniela Prayer
    Affiliations
    Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
    Search for articles by this author
  • Nataša Jovanov-Milošević
    Correspondence
    Corresponding author. School of Medicine University of Zagreb, Institute of Biology & Croatian Institute for Brain Research, Section for developmental neuroscience, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, Zagreb, Croatia.
    Affiliations
    University of Zagreb, School of Medicine, Croatian Institute for Brain Research, Section for Developmental Neuroscience, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia

    University of Zagreb, School of Medicine, Department of Biology, Šalata 3, 10000, Zagreb, Croatia
    Search for articles by this author
Published:October 08, 2021DOI:https://doi.org/10.1016/j.ejpn.2021.09.014

      Highlights

      • The transient zones of the temporal and frontal lobes were correlated in pMRI and histological slices of the same brains.
      • The absolute and relative thicknesses of the zones were measured in pMRI and corresponding HE histological scans.
      • The pMRI signal intensity profiles correlate well with the distribution of the transient zones.
      • The temporal and frontal lobe corticogenesis is temporally and spatially synchronous during 19 to 24 GW.

      Abstract

      In this study we compare temporal lobe (TL) signal intensity (SI) profiles, along with the average thicknesses of the transient zones obtained from postmortem MRI (pMRI) scans and corresponding histological slices, to the frontal lobe (FL) SI and zone thicknesses, in normal fetal brains. The purpose was to assess the synchronization of the corticogenetic processes in different brain lobes. Nine postmortem human fetal brains without cerebral pathologies, from 19 to 24 weeks of gestation (GW) were analyzed on T2-weighted 3T pMRI, at the coronal level of the thalamus and basal ganglia. The SI profiles of the transient zones in the TL correlate well spatially and temporally to the signal intensity profile of the FL. During the examined period, in the TL, the intermediate and subventricular zone are about the size of the subplate zone (SP), while the superficial SP demonstrates the highest signal intensity. The correlation of the SI profiles and the distributions of the transient zones in the two brain lobes, indicates a time-aligned histogenesis during this narrow time window. The 3TpMRI enables an assessment of the regularity of lamination patterns in the fetal telencephalic wall, upon comparative evaluation of sizes of the transient developmental zones and the SI profiles of different cortical regions. A knowledge of normal vs. abnormal transient lamination patterns and the SI profiles is a prerequisite for further advancement of the MR diagnostic tools needed for early detection of developmental brain pathologies prenatally, especially mild white matter injuries such as lesions of TL due to prenatal cytomegalovirus infections, or cortical malformations.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Paediatric Neurology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bystron I.
        • Blakemore C.
        • Rakic P.
        Development of the human cerebral cortex: Boulder Committee revisited.
        Nat. Rev. Neurosci. 2008; 9: 110-122
        • Bobic-Rasonja M.
        • Pogledic I.
        • Mitter C.
        • et al.
        Developmental differences between the limbic and neocortical telencephalic wall: an intrasubject slice-matched 3 T MRI-histological correlative study in humans.
        Cerebr. Cortex. 2021; 31: 3536-3550
        • Pogledic I.
        • Schwartz E.
        • Mitter C.
        • et al.
        The subplate layers: the superficial and deep subplate can be discriminated on 3 Tesla human fetal postmortem MRI.
        Cerebr. Cortex. 2020; 30: 5038-5048
        • Pugash D.
        • Hendson G.
        • Dunham C.P.
        • Dewar K.
        • Money D.M.
        • Prayer D.
        Sonographic assessment of normal and abnormal patterns of fetal cerebral lamination.
        Ultrasound Obstet. Gynecol. 2012; 40: 642-651
        • Corbett-Detig J.
        • Habas P.A.
        • Scott J.A.
        • et al.
        3D global and regional patterns of human fetal subplate growth determined in utero.
        Brain Struct. Funct. 2011; 215: 255-263
        • Wang W.Z.
        • Hoerder-Suabedissen A.
        • Oeschger F.M.
        • et al.
        Subplate in the developing cortex of mouse and human.
        J. Anat. 2010; 217: 368-380
        • Kostovic I.
        • Judas M.
        • Rados M.
        • Hrabac P.
        Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging.
        Cerebr. Cortex. 2002; 12: 536-544
        • Maas L.C.
        • Mukherjee P.
        • Carballido-Gamio J.
        • et al.
        Early laminar organization of the human cerebrum demonstrated with diffusion tensor imaging in extremely premature infants.
        Neuroimage. 2004; 22: 1134-1140
        • Widjaja E.
        • Geibprasert S.
        • Mahmoodabadi S.Z.
        • Blaser S.
        • Brown N.E.
        • Shannon P.
        Alteration of human fetal subplate layer and intermediate zone during normal development on MR and diffusion tensor imaging.
        AJNR. 2010; 31: 1091-1099
        • Kostovic I.
        • Jovanov-Milosevic N.
        • Rados M.
        • et al.
        Perinatal and early postnatal reorganization of the subplate and related cellular compartments in the human cerebral wall as revealed by histological and MRI approaches.
        Brain Struct. Funct. 2014; 219: 231-253
        • Widjaja E.
        • Geibprasert S.
        • Mahmoodabadi S.Z.
        • Brown N.E.
        • Shannon P.
        Corroboration of normal and abnormal fetal cerebral lamination on postmortem MR imaging with postmortem examination.
        AJNR. 2010; 31: 1987-1993
        • Righini A.
        • Parazzini C.
        • Doneda C.
        • et al.
        Early formative stage of human focal cortical gyration anomalies: fetal MRI.
        AJR Am. J. Roentgenol. 2012; 198: 439-447
        • Vasung L.
        • Lepage C.
        • Rados M.
        • et al.
        Quantitative and qualitative analysis of transient fetal compartments during prenatal human brain development.
        Front. Neuroanat. 2016; 10: 11
        • Jovanov Milosevic N.
        • Judas M.
        • Aronica E.
        • Kostovic I.
        Neural ECM in laminar organization and connectivity development in healthy and diseased human brain.
        Prog. Brain Res. 2014; 214: 159-178
        • Prayer D.
        • Kasprian G.
        • Krampl E.
        • et al.
        MRI of normal fetal brain development.
        Eur. J. Radiol. 2006; 57: 199-216
        • Diogo M.C.
        • Prayer D.
        • Gruber G.M.
        • et al.
        Echo-planar FLAIR sequence improves subplate visualization in fetal MRI of the brain.
        Radiology. 2019; 292: 159-169
        • Griffiths P.D.
        • Bradburn M.
        • Campbell M.J.
        • et al.
        Use of MRI in the diagnosis of fetal brain abnormalities in utero (MERIDIAN): a multicentre, prospective cohort study.
        Lancet. 2016;
        • Kostovic I.
        • Kostovic-Srzentic M.
        • Benjak V.
        • Jovanov-Milosevic N.
        • Rados M.
        Developmental dynamics of radial vulnerability in the cerebral compartments in preterm infants and neonates.
        Front. Neurol. 2014; 5: 139
        • Volpe J.J.
        Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances.
        Lancet Neurol. 2009; 8: 110-124
        • Severino M.
        • Geraldo A.F.
        • Utz N.
        • et al.
        Definitions and classification of malformations of cortical development: practical guidelines.
        Brain. 2020;
        • Lerman-Sagie T.
        • Leibovitz Z.
        Malformations of cortical development: from postnatal to fetal imaging.
        Can. J. Neurol. Sci. 2016; 43: 611-618
        • Bayer S.A.
        • Altman J.
        The Human Brain during the Second Trimester.
        CRC Press, Taylor and Francis Group, London2005: p16
        • Bobic-Rasonja M.
        • Pogledic I.
        • Mitter C.
        • et al.
        Developmental differences between the limbic and neocortical telencephalic wall: an intrasubject slice-matched 3 T MRI-histological correlative study in humans.
        Cerebr. Cortex. 2021;
        • Burmeister H.P.
        • Bitter T.
        • Heiler P.M.
        • et al.
        Imaging of lamination patterns of the adult human olfactory bulb and tract: in vitro comparison of standard- and high-resolution 3T MRI, and MR microscopy at 9.4 T.
        Neuroimage. 2012; 60: 1662-1670
        • Eickhoff S.
        • Walters N.B.
        • Schleicher A.
        • et al.
        High-resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex.
        Hum. Brain Mapp. 2005; 24: 206-215
        • Pogledic I.
        • Kostovic I.
        • Fallet-Bianco C.
        • Adle-Biassette H.
        • Gressens P.
        • Verney C.
        Involvement of the subplate zone in preterm infants with periventricular white matter injury.
        Brain Pathol. 2014; 24: 128-141
        • Chun J.J.
        • Shatz C.J.
        The earliest-generated neurons of the cat cerebral cortex: characterization by MAP2 and neurotransmitter immunohistochemistry during fetal life.
        J. Neurosci. 1989; 9: 1648-1667
        • Kostovic I.
        • Krmpotic-Nemanic J.
        • Kelovic Z.
        The early development of glia in human neocortex.
        Rad JAZU. 1975; 371: 155-159
        • Judas M.
        • Sedmak G.
        • Kostovic I.
        The significance of the subplate for evolution and developmental plasticity of the human brain.
        Front. Hum. Neurosci. 2013; 7: 423
        • Kostovic I.
        • Isasegi I.Z.
        • Krsnik Z.
        Sublaminar organization of the human subplate: developmental changes in the distribution of neurons, glia, growing axons and extracellular matrix.
        J. Anat. 2019; 235: 481-506
        • Wang R.
        • Dai G.
        • Takahashi E.
        High resolution MRI reveals detailed layer structures in early human fetal stages: in vitro study with histologic correlation.
        Front. Neuroanat. 2015; 9: 150
        • Rados M.
        • Judas M.
        • Kostovic I.
        In vitro MRI of brain development.
        Eur. J. Radiol. 2006; 57: 187-198
        • Boretius S.
        • Kasper L.
        • Tammer R.
        • Michaelis T.
        • Frahm J.
        MRI of cellular layers in mouse brain in vivo.
        Neuroimage. 2009; 47: 1252-1260
        • Dinse J.
        • Hartwich N.
        • Waehnert M.D.
        • et al.
        A cytoarchitecture-driven myelin model reveals area-specific signatures in human primary and secondary areas using ultra-high resolution in-vivo brain MRI.
        Neuroimage. 2015; 114: 71-87
        • van Veluw S.J.
        • Fracasso A.
        • Visser F.
        • et al.
        FLAIR images at 7 Tesla MRI highlight the ependyma and the outer layers of the cerebral cortex.
        Neuroimage. 2015; 104: 100-109
        • Jakovcevski I.
        • Zecevic N.
        Sequence of oligodendrocyte development in the human fetal telencephalon.
        Glia. 2005; 49: 480-491
        • Jakovcevski I.
        • Filipovic R.
        • Mo Z.
        • Rakic S.
        • Zecevic N.
        Oligodendrocyte development and the onset of myelination in the human fetal brain.
        Front. Neuroanat. 2009; 3: 5
        • Pugash D.N.
        • Ursula
        • Brugger Peter
        • Prayer Daniela
        Fetal MRI Fetal MRI of Normal Brain Development.
        Springer, 2011: 147-177
        • Kostovic I.
        • Jovanov-Milosevic N.
        The development of cerebral connections during the first 20-45 weeks' gestation.
        Semin. Fetal Neonatal Med. 2006; 11: 415-422
        • Trivedi R.
        • Gupta R.K.
        • Husain N.
        • et al.
        Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology.
        Neuroradiology. 2009; 51: 567-576
        • Griffiths P.D.
        • Variend D.
        • Evans M.
        • et al.
        Postmortem MR imaging of the fetal and stillborn central nervous system.
        AJNR. 2003; 24: 22-27
        • Griffiths P.D.
        • Paley M.N.
        • Whitby E.H.
        Post-mortem MRI as an adjunct to fetal or neonatal autopsy.
        Lancet. 2005; 365: 1271-1273
        • Whitby E.H.
        • Paley M.N.
        • Cohen M.
        • Griffiths P.D.
        Post-mortem fetal MRI: what do we learn from it?.
        Eur. J. Radiol. 2006; 57: 250-255
        • Whitby E.H.
        • Paley M.N.
        • Cohen M.
        • Griffiths P.D.
        Postmortem MR imaging of the fetus: an adjunct or a replacement for conventional autopsy?.
        Semin. Fetal Neonatal Med. 2005; 10: 475-483
        • Zhang Z.
        • Liu S.
        • Lin X.
        • et al.
        Development of laminar organization of the fetal cerebrum at 3.0T and 7.0T: a postmortem MRI study.
        Neuroradiology. 2011; 53: 177-184
        • Zhang Z.
        • Liu S.
        • Lin X.
        • et al.
        Development of fetal brain of 20 weeks gestational age: assessment with post-mortem Magnetic Resonance Imaging.
        Eur. J. Radiol. 2011; 80: e432-439
        • Zhan J.
        • Dinov I.D.
        • Li J.
        • et al.
        Spatial-temporal atlas of human fetal brain development during the early second trimester.
        Neuroimage. 2013; 82: 115-126
        • Vasung L.
        • Zhao C.
        • Barkovich M.
        • et al.
        Association between quantitative MR markers of cortical evolving organization and gene expression during human prenatal brain development.
        Cerebr. Cortex. 2021;
        • Vasung L.
        • Rezayev A.
        • Yun H.J.
        • et al.
        Structural and diffusion MRI analyses with histological observations in patients with lissencephaly.
        Front. Cell Dev. Biol. 2019; 7: 124
        • Vasung L.
        • Rollins C.K.
        • Velasco-Annis C.
        • et al.
        Spatiotemporal differences in the regional cortical plate and subplate volume growth during fetal development.
        Cerebr. Cortex. 2020; 30: 4438-4453
        • Lerman-Sagie T.
        • Pogledic I.
        • Leibovitz Z.
        • Malinger G.
        A practical approach to prenatal diagnosis of malformations of cortical development.
        Eur. J. Paediatr. Neurol. 2021; 34: 50-61
        • Judas M.
        • Rados M.
        • Jovanov-Milosevic N.
        • Hrabac P.
        • Stern-Padovan R.
        • Kostovic I.
        Structural, immunocytochemical, and mr imaging properties of periventricular crossroads of growing cortical pathways in preterm infants.
        AJNR. 2005; 26: 2671-2684
        • Milos R.I.
        • Jovanov-Milosevic N.
        • Mitter C.
        • et al.
        Developmental dynamics of the periventricular parietal crossroads of growing cortical pathways in the fetal brain - in vivo fetal MRI with histological correlation.
        Neuroimage. 2020; 210: 116553