Duplication/triplication mosaicism of EBF3 and expansion of the EBF3 neurodevelopmental disorder phenotype

Erika Ignatius, Riina Puosi, Maarit Palomäki, Noora Forsbom, Max Pohjanpelto, Tiina Alitalo, Anna-Kaisa Anttonen, Kristiina Avela, Leena Haataja, Christopher J. Carroll, Tuula Lönnqvist, Pirjo Isohanni

PII: S1090-3798(21)00232-4
DOI: https://doi.org/10.1016/j.ejpn.2021.12.012
Reference: YEJPN 2902

To appear in: European Journal of Paediatric Neurology

Received Date: 12 August 2021
Revised Date: 6 December 2021
Accepted Date: 18 December 2021

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Ltd on behalf of European Paediatric Neurology Society.
Title: Duplication/triplication mosaicism of EBF3 and expansion of the EBF3 neurodevelopmental disorder phenotype

Erika Ignatiusa,b, Riina Puosia, Maarit Palomäkic, Noora Forsbomd, Max Pohjanpeltob, Tiina Alitaloe, Anna-Kaisa Anttonene,f, Kristiina Avelaf, Leena Haatajaa, Christopher J. Carrollg, Tuula Lönnqvista, Pirjo Isohannia,b

aDepartment of Child Neurology, Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
bResearch Programs Unit, Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
cDepartment of Radiology, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
dDepartment of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki
eLaboratory of Genetics, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki
fDepartment of Clinical Genetics, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
gGenetics Research Centre, Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, United Kingdom
Corresponding author email and postal address: pirjo.isohanni@helsinki.fi

Department of Child Neurology, Children’s Hospital, Helsinki University Hospital
P.O. Box 347
00029 HUS
Finland

Funding: This work was supported by the University of Helsinki, Arvo and Lea Ylppö Foundation, Foundation for Pediatric Research, Päivikki and Sakari Sohlberg Foundation, Biomedicum Helsinki Foundation and Maire Taponen Foundation.

Declarations of interest: none
Abstract

Deleterious variants in the transcription factor early B-cell factor 3 (EBF3) are known to cause a neurodevelopmental disorder (EBF3-NDD). We report eleven individuals with EBF3 variants, including an individual with a duplication/triplication mosaicism of a region encompassing EBF3 and a phenotype consistent with EBF3-NDD, which may reflect the importance of EBF3 gene-dosage for neurodevelopment. The phenotype of individuals in this cohort was quite mild compared to the core phenotype of previously described individuals. Although ataxia tended to wane with age, we show that cognitive difficulties may increase, and we recommend that individuals with EBF3-NDD have systematic neuropsychological follow-up.

Keywords: EBF3, EBF3-NDD, HADDS, ataxia, phenotype, 10q26
1. Introduction

Heterozygous variants in the transcription factor early B-cell factor 3 (EBF3) are reported to cause a neurodevelopmental disorder which is also called hypotonia, ataxia and delayed development syndrome (HADDS) 1-3. EBF3 is a member of the highly evolutionarily conserved EBF- transcription factor family, members of which have a variety of developmental roles 4. EBF3 is widely expressed throughout the body, including prenatally expressed in the brain, and may be a major regulator of many neurodevelopmental disorder genes 5. In mice, EBF3 is highly expressed in Cajal–Retzius-cells 6 which have an important role in mammalian cortical development. It is estimated that pathogenic EBF3 variants could be the underlying cause in 1:1000 individuals with unexplained neurodevelopmental disorders 2 and as such, EBF3 neurodevelopmental disorder (EBF3-NDD) is likely vastly underdiagnosed. As a growing number of individuals are described 1-3,5,7-14, the EBF3-associated phenotype is expanding and new disease features continue to be reported.

EBF3-haploinsufficiency is reported to be a likely pathogenic mechanism for EBF3-NDD 12, although dominant-negative and gain-of-function mechanisms have also been proposed 1-3. In individuals with EBF3-NDD most reported variants are de novo missense or nonsense variants, but other variant types, such as deletions, have been reported. EBF3-haploinsufficiency likely at least partially explains the phenotype of previously reported individuals with large terminal 10q26 deletions 12. To our knowledge, gross duplications limited to only EBF3 have not been reported.
We report a cohort of individuals with *EBF3* variants, including an individual with a duplication/triplication mosaicism encompassing *EBF3*, and expand on the *EBF3* phenotypic spectrum and cognitive trajectory in EBF3-NDD.

2. Subjects and methods

We studied 11 individuals from six families with *EBF3* variants. The Helsinki University Hospital ethics review board approved the study. Individuals and/or their legal guardians gave written informed consent in accordance with the Declaration of Helsinki. A study clinician examined all individuals and reviewed available clinical, laboratory and imaging data. Ataxia severity was evaluated using the Scale for Assessment and Rating of Ataxia (SARA)\(^\text{15}\).

The *EBF3* variants of families 1-4 were identified by exome sequencing and those of families 5 and 6 by array comparative genomic hybridization (array-CGH; Supplementary Methods). The mosaic duplication/triplication in P11 was confirmed with fluorescence *in situ* hybridization (FISH), and somatic mosaicism in the mother of P8 was quantified using droplet digital PCR (Supplementary Methods). Family 1 has six individuals with a pathogenic *EBF3* variant and the other families have one affected individual each. Individuals P5, P7, P8 and P10 have previously been published in a cohort study of childhood-onset ataxias\(^\text{16}\). Variants reported in this study have been submitted to ClinVar\(^\text{17}\) (https://www.ncbi.nlm.nih.gov/clinvar/, SCV001547519 - SCV001547524) and sequence variant classification was based on the American College of Medical Genetics and Genomics (ACMG) guidelines for the interpretation of sequence variants\(^\text{18}\).
The study neuropsychologist reviewed all available written reports (n=25) and raw data (n=19) from neuropsychological examinations. Data from formal neuropsychological examinations were available for all individuals except P9 and P11. Different tests of the Wechsler Scales and The Bayley Scales of Infant Development were used for evaluation of cognitive capacity depending on the individual’s age at time of testing (Supplementary Methods). Finnish norms and versions were used for all the scales.

3. Results

Table 1 shows clinical findings of the individuals in this study as well as 34 previously published individuals (last column). Strabismus was the most common presenting symptom in our cohort and specifically infantile strabismus stood out as a common feature in our case series. SARA 15 score was above the mean in all cases, but mostly within the range of unaffected adults or typically developing children.

Fig. 1 shows MRI-images from individuals with abnormalities detected. The brain MRI of P9 showed a small area of polymicrogyria, a malformation of cortical development, which may represent an additional feature associated with EBF3-NDD.

In four families, the variant arose \textit{de novo}, family 1 shows dominant inheritance. In family 3, P8 was heterozygous for the NM\textunderscore 001005463.2\text{:c.1183C>T}; NP\textunderscore 001005463.1\text{:p.(Arg395Ter)} variant. P8 inherited the variant from her clinically unaffected mother, who carries the variant in a mosaic state (fractional abundance was 22\%, 22\% and 33\% in leukocytes, buccal cells and urine cells respectively, see Supplementary Methods).
3.1 Duplication/triplication mosaicism of EBF3

Individual P11 was investigated for motor delay, hypotonia and asymmetric tone at four months of age. Brain MRI at 11 months revealed pontine and cerebellar hypoplasia and dysplastic foliation of the cerebellar hemispheres (Fig. 1). In childhood, P11 had ataxia and tremor, but tone asymmetry had normalized. P11 had mild dysmorphic features including hypertelorism, small nose, long philtrum, open mouth appearance, everted lower lip, and small nails (detailed clinical features see Table 1).

Array-CGH and FISH analyses revealed an 888 kb de novo tandem duplication/triplication mosaicism (40%/60% of cells) on chromosome 10q26.3, NC_000010.10:g.(131225843_131243689)_(132131959_132151948)dup/[3] (Supplementary Fig. 1). The region covers the genes EBF3, GLRX3, MGMT and C10orf143. Clinical trio exome sequencing revealed no other pathogenic or likely pathogenic variants. To our knowledge, duplications or triplications of EBF3 have not been previously reported to cause EBF3-NDD.

3.2 Neuropsychological profiles

Fig. 2 shows the results of cognitive assessments for which raw data was available. Individuals in this cohort with deleterious variants in EBF3 showed heterogeneous and uneven cognitive profiles. At a younger age, full-scale intelligence quotients were mostly within the average or low average range, despite varied performance in different cognitive indexes. Cognitive difficulties seem to increase with age, although individuals did not lose knowledge or skills. At an older age, the performance across different cognitive indexes varied mostly from low average to extremely low performance. Some of the individuals were functioning within the extremely low range of intelligence but at the
time did not fulfill the diagnostic criteria for intellectual disability. This is due to lack of severe impairments/disabilities in adaptive functions and academic skills; two individuals performed worse than expected due to co-operation and concentration difficulties. Behavioral and/or emotional difficulties may explain poor performance in some individuals. Six individuals had difficulties in concentration or were diagnosed with attention deficit hyperactivity disorder. Four of the school-aged children attended full-time special education with normal or adjusted syllabus and two attended part-time.

One individual in their thirties had a full-scale intelligence quotient in the average range, whereas the individual’s intellectual abilities were above average in a childhood evaluation. P9 has not yet been evaluated by a neuropsychologist but seems to be more severely affected than other individuals in the cohort.

4. Discussion

We identified a duplication/triplication mosaicism of the EBF3 gene as a possible genetic mechanism in EBF3-related disease. We describe individuals with pathogenic EBF3 variants without a diagnosis of intellectual disability and analyze the cognitive trajectory of individuals with EBF3-NDD.

In the Database of Genomic Variants, there are no reports of duplications covering the entire EBF3 gene and which are interpreted to be normal variation. We have not seen EBF3 duplications in 13 000 patient/parent samples (array-CGH in-house data). Multiple individuals with distal trisomy 10q syndrome have been described and pathogenic/likely pathogenic gross copy number gains including EBF3 are found in DECIPHER (1.2-24 Mb) and ClinVar (4.7-135 Mb), but none including only EBF3. DECIPHER includes two individuals with intellectual disability/global developmental delay and duplications covering the same genes as in P11. EBF3 is the only one of these
genes currently linked to human disease in OMIM22. Multiple individuals in DECIPHER21 with copy number gains covering \textit{EBF3} and reported individuals with a diagnosis of EBF3-ND share features such as intellectual disability, delayed speech and language development, hypotonia, low-set ears, high palate and cryptorchidism.

A possible disease mechanism in P11 is increased gene dosage and an associated increase in \textit{EBF3} expression. As patient cells were unavailable, we were unable to analyze \textit{EBF3} expression and measure the functional consequence of the duplication/triplication. However, previous experimental evidence derived from an \textit{in-vitro} assay that measures transactivation abilities of EBF3 has suggested dose-dependent inhibitory effects of EBF3 function at high concentrations3.

Pathogenic mechanisms involving \textit{EBF3} are not fully understood. Most individuals in this cohort had a presumed loss-of-function variant. Neither of the missense variants found in this cohort were located in the EBF3 “zinc knuckle” motif reported to be essential for DNA-binding but they might indirectly affect the binding affinity of EBF3 for DNA2,3.

Cognitive profile in previously reported individuals with EBF3-ND varies. The severity of cognitive delay can vary vastly even between individuals with near-identical genetic findings; P10 has a \textit{de novo} deletion with the same gene content as an individual with a diagnosis of severe intellectual disability12, however P10 has full scale IQ in the average range. We found individuals in this cohort to have a milder cognitive profile than most previously described individuals who have mostly been reported to have intellectual disability. We note with interest a recent publication by Padhi et al., describing three individuals with \textit{de novo} non-coding variants in the brain-specific enhancer hs737 that
targets the \textit{EBF3} gene and a phenotype of autism without intellectual disability5. In our cohort cognitive difficulties seemed to increase with age. Our cohort is small, and this preliminary finding should be explored in a larger follow-up study. We recommend that individuals with EBF3-NDD have systematic neuropsychological follow-up even when cognitive skills are within normal range. Neuropsychiatric symptoms, such as difficulties with attention, were common in this cohort and it is important that adequate support is given.

In most individuals in this cohort, ataxia and hypotonia seemed to wane with age, and improvement has also been reported by Beecroft et al7. Previous publications have described hypertonia and dystonia in a minority of individuals2,13. 6/11 individuals of the cohort showed increased tone and/or asymmetric movement patterns that largely resolved during childhood, including significant infantile dystonia in P9. Strabismus is seen in 84\% of the previously published individuals we reviewed1-3,7,8,10,12,13 and 82 \% of individuals reported in this study, whereas in a series of pediatric patients with different chronic ataxias, only 29\% exhibited strabismus23.

The polymicrogyria detected in one individual with EBF3-NDD may imply a role of \textit{EBF3} in cortical development. In addition to our patient with polymicrogyria, an individual with a small schizencephalic cleft has been previously reported13; schizencephaly can be considered a related type of cortical malformation. The etiologies of polymicrogyria are heterogeneous and it is thought that nongenetic and genetic etiologies, including germline and mosaic variants, can underlie the malformation24.

Pathogenic \textit{EBF3} variants seem to be a surprisingly common cause of childhood ataxia and neurodevelopmental syndrome, and more information on the disease mechanism and
phenotype are required. Larger cohorts of individuals with deleterious variants in \textit{EBF3} are needed to fully characterize the cognitive trajectory in EBF3-NDD. Future research should explore factors modifying the severity of disease in individuals with pathogenic \textit{EBF3} variants.

Acknowledgments

We thank the individuals and their families, and all those who assisted in collecting the data. This study makes use of data generated by the DECIPHER community. A full list of centres who contributed to the generation of the data is available from https://decipher.sanger.ac.uk/about/stats and via email from decipher@sanger.ac.uk. Funding for the DECIPHER project was provided by Wellcome. Those who carried out the original analysis and collection of the DECIPHER Data bear no responsibility for the further analysis or interpretation of the data.

22. Online Mendelian Inheritance in Man, OMIM®. [Internet]; Available from: https://omim.org/.

Web references

- Database of Genomic Variants; http://dgv.tcag.ca/; accessed 23.7.2021
Fig. 1: Brain MRI in individuals with abnormal imaging.

P7: The cerebellar hemispheres and lower part of the vermis are slightly hypoplastic (3D T1 sagittal and T2 coronal images).

P9: The upper part of the vermis is dysplastic and the lower part slightly hypoplastic (T1 sagittal image). The lateral ventricles and subarachnoid spaces are slightly enlarged (T2 axial image). An arrow marks right perisylvian polymicrogyria (T1 coronal image).

P10: The upper part of the vermis is dysplastic (3D T1 sagittal image).

P11: Dysplastic foliation of the cerebellar hemispheres (T2 axial image), pontine and cerebellar hypoplasia (not shown).

m months, y years

Fig. 2: Cognitive trajectory of individuals with deleterious EBF3 variants.

x-axis: age (years), y-axis: intelligence quotient; average 90-109, low average 80-89, borderline 70-79, extremely low 69 and below. Individuals are not specified for privacy reasons.
Table 1. Clinical findings in individuals with EBF3 variants.

\(^a \)Scale for Assessment and Rating of Ataxia mean score and range in unaffected adults

\(^b \)Age-related predictive values for Scale for Assessment and Rating of Ataxia total in typically developing children, mean score and 95% prediction interval

\(^c \)NC_000010.10:g.(131529025_131542049)_(132107231_132131900)\text{del}

\(^d \)NC_000010.10:g.(131225843_131243689)_(132131959_132151948)\text{dup/[3]}

*Individuals have not been routinely examined for abnormality of the genitourinary system

\(n \) number of individuals for whom the information was available, NA not available/not applicable, ND not detected, \(m \) months, UTI urinary tract infection(s), VUS variant of uncertain significance, \(y \) years, neonatal first 28 days of life, infantile 28 days to 1 year, childhood 1-5 years, juvenile 5-15 years, adult 16 years or older
<table>
<thead>
<tr>
<th>Variant type</th>
<th>Deleterious variant in EBF3</th>
<th>Deletion of EBF3</th>
<th>Duplication/triplication of EBF3</th>
<th>Deleterious variant in or deletion of EBF3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family</td>
<td>F1</td>
<td>F1</td>
<td>F1</td>
<td>F1</td>
</tr>
<tr>
<td>Individual</td>
<td>P1</td>
<td>P2</td>
<td>P3</td>
<td>P4</td>
</tr>
<tr>
<td>DNA NM_001005463.2</td>
<td>c.622dup</td>
<td>c.622dup</td>
<td>c.622dup</td>
<td>c.622dup</td>
</tr>
<tr>
<td>Protein NP_001005463.1</td>
<td>p.(Met208AsnfsTer56)</td>
<td>p.(Met208AsnfsTer56)</td>
<td>p.(Met208AsnfsTer56)</td>
<td>p.(Met208AsnfsTer56)</td>
</tr>
<tr>
<td>Inheritance</td>
<td>unknown</td>
<td>inherited</td>
<td>inherited</td>
<td>inherited</td>
</tr>
<tr>
<td>Sex</td>
<td>female</td>
<td>female</td>
<td>female</td>
<td>female</td>
</tr>
<tr>
<td>Age of presentation</td>
<td>infantile</td>
<td>neonatal</td>
<td>infantile</td>
<td>infantile</td>
</tr>
<tr>
<td>Presenting features</td>
<td>strabismus</td>
<td>tremor</td>
<td>motor delay</td>
<td>strabismus</td>
</tr>
<tr>
<td>Age at last evaluation</td>
<td>adult</td>
<td>adult</td>
<td>juvenile</td>
<td>juvenile</td>
</tr>
<tr>
<td>Height</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>Microcephaly</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Hypotonia</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Motor delay</td>
<td>no (clumsy)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Independent walking</td>
<td>15 m</td>
<td>24 m</td>
<td>14 m</td>
<td>21 m</td>
</tr>
<tr>
<td>Ataxia</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Tremor</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>SARA score total when last tested 3 (0.4, 0.7-7.5)</td>
<td>4 (0.4, 0.7-7.5)</td>
<td>5 (0.4, 0.7-7.5)</td>
<td>4 (0.1, 0.0-1.4)</td>
<td>5 (1.9, 0.1-17.0) NA</td>
</tr>
<tr>
<td>Abnormality of tone</td>
<td>no</td>
<td>no</td>
<td>transient mild asymmetric</td>
<td>no</td>
</tr>
</tbody>
</table>

34 previously reported individuals 34 7-9, 10-33
26 variants
misense, nonsense, splice, frameshift, 9-bp duplication or whole gene deletion

De novo or inherited from affected or mosaic parent
male 15/34, female 19/34
congenital, neonatal or infantile presentation (n=15)
hyptonia, developmental/motor delay, ataxia, poor feeding, hypermobility, urogenital anomaly and/or infection (n=15)

15 m to mid-thirties (n=33)
short stature 11/28
5/27
28/33
33/33
14 m to 5 y, 7 individuals unable to walk independently (n=22)
20/30
3/14
hypertonia in 1 individual, dystonia in 1 individual
<table>
<thead>
<tr>
<th>Delayed speech and language development or language impairment</th>
<th>no</th>
<th>yes</th>
<th>yes</th>
<th>yes</th>
<th>yes</th>
<th>no</th>
<th>yes</th>
<th>no</th>
<th>yes</th>
<th>no</th>
<th>yes</th>
<th>yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intellectual disability</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strabismus</td>
<td>infantile onset alternating esotropia, surgery +</td>
<td>infantile onset alternating esotropia with abduction weakness, surgery +</td>
<td>childhood onset alternating esotropia, surgery -</td>
<td>intermittent esotropia, surgery -</td>
<td>infantile onset alternating esotropia, cross fixation, surgery +</td>
<td>infantile onset alternating esotropia, surgery +</td>
<td>infantile onset alternating esotropia, surgery +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abnormality of the genitourinary system*</td>
<td>vesicoureteral reflux, recurrent UTI</td>
<td>renal cyst, UTI</td>
<td>right kidney slightly smaller then left, UTI</td>
<td>normal (34 y)</td>
<td>normal (age 3 y, images no longer available for independent review)</td>
<td>UTI</td>
<td>normal (5 y)</td>
<td>normal (8 m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRI brain (age imaged)</td>
<td>normal (34 y)</td>
<td>not imaged</td>
<td>not imaged</td>
<td>normal (5 y)</td>
<td>normal (8 m)</td>
<td>normal (4 y)</td>
<td>normal (4 y)</td>
<td>normal (4 y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other features</td>
<td>behavioral and/or emotional difficulties, congenital calcaneovalgus, pes planus, high narrow palate</td>
<td>behavioral and/or emotional difficulties, accessory spleen, vertigo</td>
<td>behavioral and/or emotional difficulties, pes planus</td>
<td>behavioral and/or emotional difficulties, long shiurrum, limited elbow extension due to abnormality of the proximal radii, pes planus</td>
<td>pes planus</td>
<td>pes planus</td>
<td>pes planus</td>
<td>weak cry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 30/32 |
| 28/30 |
| 26/31 |
| 19/32 |
| 10/28 |

*Global developmental delay refers to delay in multiple domains, including cognitive, language, motor, and adaptive skills.
Highlights:

- Individuals with $EBF3$ variants may have mild phenotypes without intellectual disability

- Copy number gain of $EBF3$ is associated with a neurodevelopmental phenotype

- Cognitive difficulties in individuals with $EBF3$ variants may increase with age

- $EBF3$ variants may be associated with cortical malformations
Declarations of interest: none