Advertisement

Re-examining the characteristics of pediatric multiple sclerosis in the era of antibody-associated demyelinating syndromes

Published:September 01, 2022DOI:https://doi.org/10.1016/j.ejpn.2022.08.006

      Highlights

      • The incidence of pediatric MS is estimated as 0.68 per 100,000 children in Turkey.
      • Careful exclusion of MOG-IgG disease and other MS mimics allowed accurate description of pediatric MS in this series.
      • No cases of primary progressive MS were recorded among the 634 pediatric MS patients.
      • Onset before 12 years and ADEM-like presentation were less frequent than previously reported.
      • Pediatric MS appears more homogeneous and more similar to adult-onset MS than previously thought.

      Abstract

      Background

      The discovery of anti-myelin oligodendrocyte glycoprotein (MOG)-IgG and anti-aquaporin 4 (AQP4)-IgG and the observation on certain patients previously diagnosed with multiple sclerosis (MS) actually have an antibody-mediated disease mandated re-evaluation of pediatric MS series.

      Aim

      To describe the characteristics of recent pediatric MS cases by age groups and compare with the cohort established before 2015.

      Method

      Data of pediatric MS patients diagnosed between 2015 and 2021 were collected from 44 pediatric neurology centers across Türkiye. Clinical and paraclinical features were compared between patients with disease onset before 12 years (earlier onset) and ≥12 years (later onset) as well as between our current (2015–2021) and previous (<2015) cohorts.

      Results

      A total of 634 children (456 girls) were enrolled, 89 (14%) were of earlier onset. The earlier-onset group had lower female/male ratio, more frequent initial diagnosis of acute disseminated encephalomyelitis (ADEM), more frequent brainstem symptoms, longer interval between the first two attacks, less frequent spinal cord involvement on magnetic resonance imaging (MRI), and lower prevalence of cerebrospinal fluid (CSF)-restricted oligoclonal bands (OCBs). The earlier-onset group was less likely to respond to initial disease-modifying treatments. Compared to our previous cohort, the current series had fewer patients with onset <12 years, initial presentation with ADEM-like features, brainstem or cerebellar symptoms, seizures, and spinal lesions on MRI. The female/male ratio, the frequency of sensorial symptoms, and CSF-restricted OCBs were higher than reported in our previous cohort.

      Conclusion

      Pediatric MS starting before 12 years was less common than reported previously, likely due to exclusion of patients with antibody-mediated diseases. The results underline the importance of antibody testing and indicate pediatric MS may be a more homogeneous disorder and more similar to adult-onset MS than previously thought.

      Keywords

      Abbreviations:

      MOG (myeline oligodentrocyte glycoprotein), AQP4 (aquaporine 4)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Paediatric Neurology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chitnis T.
        • Glanz B.
        • Jaffin S.
        • Healy B.
        Demographics of pediatric-onset multiple sclerosis in an MS center population from the Northeastern United States.
        Mult. Scler. 2009; 15: 627-631https://doi.org/10.1177/1352458508101933
        • McKay K.A.
        • Hillert J.
        • Manouchehrinia A.
        Long-term disability progression of pediatric-onset multiple sclerosis.
        Neurology. 2019; 92: E2764-E2773https://doi.org/10.1212/WNL.0000000000007647
        • Achiron A.
        • Garty B.Z.
        • Menascu S.
        • Magalashvili D.
        • Dolev M.
        • Ben-Zeev B.
        • Pinhas-Hamiel O.
        Multiple sclerosis in Israeli children: incidence, an clinical, cerebrospinal fluid and magnetic resonance imaging findings.
        Isr. Med. Assoc. J. 2012 Apr; 14: 234-239
        • Krupp L.B.
        • Tardieu M.
        • Amato M.P.
        • et al.
        International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions.
        Mult. Scler. 2013; 19: 1261-1267https://doi.org/10.1177/1352458513484547
        • Lubetzki C.
        150 years since Charcot's lectures on multiple sclerosis.
        Lancet Neurol. 2018; 17: 1041https://doi.org/10.1016/S1474-4422(18)30410-1
        • Yılmaz Ü.
        • Anlar B.
        • Gücüyener K.
        • et al.
        Characteristics of pediatric multiple sclerosis: the Turkish pediatric multiple sclerosis database.
        Eur. J. Paediatr. Neurol. 2017; 21: 864-872https://doi.org/10.1016/J.EJPN.2017.06.004
        • Renoux C.
        • Vukusic S.
        • Mikaeloff Y.
        • et al.
        Natural history of multiple sclerosis with childhood onset.
        N. Engl. J. Med. 2007; 356: 2603-2613https://doi.org/10.1056/NEJMOA067597
        • Chabas D.
        • Ness J.
        • Belman A.
        • et al.
        Younger children with MS have a distinct CSF inflammatory profile at disease onset.
        Neurology. 2010; 74: 399-405https://doi.org/10.1212/WNL.0B013E3181CE5DB0
        • Belman A.L.
        • Krupp L.B.
        • Olsen C.S.
        • et al.
        Characteristics of children and adolescents with multiple sclerosis.
        Pediatrics. 2016; 138https://doi.org/10.1542/PEDS.2016-0120
        • Hamdy S.M.
        • Abdel-Naseer M.
        • Shalaby N.M.
        • et al.
        Pediatric-onset multiple sclerosis in Egypt: a multi-center registry of 186 patients.
        Neuropsychiatric Dis. Treat. 2018; 14: 631-640https://doi.org/10.2147/NDT.S160060
        • Thompson A.J.
        • Banwell B.L.
        • Barkhof F.
        • et al.
        Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria.
        Lancet Neurol. 2018; 17: 162-173https://doi.org/10.1016/S1474-4422(17)30470-2
        • Hacohen Y.
        • Brownlee W.
        • Mankad K.
        • et al.
        Improved performance of the 2017 McDonald criteria for diagnosis of multiple sclerosis in children in a real-life cohort.
        Mult. Scler. 2020; 26: 1372-1380https://doi.org/10.1177/1352458519863781
        • Jarius S.
        • Paul F.
        • Aktas O.
        • et al.
        MOG encephalomyelitis: international recommendations on diagnosis and antibody testing.
        J. Neuroinflammation. 2018; 15: 134https://doi.org/10.1186/s12974-018-1144-2
      1. https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2021-45500. Population by province, single age and sex 2007-2021. Access date: 29.03.2022. No Title.

        • Sadaka Y.
        • Verhey L.H.
        • Shroff M.M.
        • et al.
        McDonald criteria for diagnosing pediatric multiple sclerosis.
        Ann. Neurol. 2010; 72 (2012): 211-223https://doi.org/10.1002/ANA.23575
        • Jeong A.
        • Oleske D.M.
        • Holman J.
        Epidemiology of pediatric-onset multiple sclerosis: a systematic review of the literature.
        J. Child Neurol. 2019; 34: 705-712https://doi.org/10.1177/0883073819845827
        • Yan K.
        • Balijepalli C.
        • Desai K.
        • Gullapalli L.
        • Druyts E.
        Epidemiology of pediatric multiple sclerosis: a systematic literature review and meta-analysis.
        Mult Scler Relat Disord. 2020; 44https://doi.org/10.1016/J.MSARD.2020.102260
        • Bellucci G.
        • Rinaldi V.
        • Buscarinu M.C.
        • et al.
        Multiple sclerosis and SARS-CoV-2: has the interplay started?.
        Front. Immunol. 2021; 12https://doi.org/10.3389/FIMMU.2021.755333
        • Waldman A.
        • Ness J.
        • Pohl D.
        • et al.
        Pediatric multiple sclerosis: clinical features and outcome.
        Neurology. 2016; 87: S74-S81https://doi.org/10.1212/WNL.0000000000003028
        • Chitnis T.
        Role of puberty in multiple sclerosis risk and course.
        Clin. Immunol. 2013; 149: 192-200https://doi.org/10.1016/J.CLIM.2013.03.014
        • Huppke B.
        • Ellenberger D.
        • Rosewich H.
        • Friede T.
        • Gärtner J.
        • Huppke P.
        Clinical presentation of pediatric multiple sclerosis before puberty.
        Eur. J. Neurol. 2014; 21: 441-446https://doi.org/10.1111/ENE.12327
        • Banwell B.
        • Bar-Or A.
        • Arnold D.L.
        • et al.
        Clinical, environmental, and genetic determinants of multiple sclerosis in children with acute demyelination: a prospective national cohort study.
        Lancet Neurol. 2011; 10: 436-445https://doi.org/10.1016/S1474-4422(11)70045-X
        • Belbasis L.
        • Bellou V.
        • Evangelou E.
        • Ioannidis J.P.A.
        • Tzoulaki I.
        Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses.
        Lancet Neurol. 2015; 14: 263-273https://doi.org/10.1016/S1474-4422(14)70267-4
        • Duignan S.
        • Brownlee W.
        • Wassmer E.
        • et al.
        Paediatric multiple sclerosis: a new era in diagnosis and treatment.
        Dev. Med. Child Neurol. 2019; 61: 1039-1049https://doi.org/10.1111/DMCN.14212
        • Mowry E.M.
        • Krupp L.B.
        • Milazzo M.
        • et al.
        Vitamin D status is associated with relapse rate in pediatric-onset multiple sclerosis.
        Ann. Neurol. 2010; 67: 618-624https://doi.org/10.1002/ANA.21972
        • Mowry E.M.
        • Waubant E.
        • McCulloch C.E.
        • et al.
        Vitamin D status predicts new brain magnetic resonance imaging activity in multiple sclerosis.
        Ann. Neurol. 2012; 72: 234-240https://doi.org/10.1002/ANA.23591
        • Oden Akman A.
        • Tumer L.
        • Hasanoglu A.
        • Ilhan M.
        • Cayci B.
        Frequency of vitamin D insufficiency in healthy children between 1 and 16 years of age in Turkey.
        Pediatr. Int. 2011; 53: 968-973https://doi.org/10.1111/J.1442-200X.2011.03486.X
        • Salzer J.
        • Hallmans G.
        • Nyström M.
        • Stenlund H.
        • Wadell G.
        • Sundström P.
        Vitamin D as a protective factor in multiple sclerosis.
        Neurology. 2012; 79: 2140-2145https://doi.org/10.1212/WNL.0B013E3182752EA8
        • Hapfelmeier A.
        • Gasperi C.
        • Donnachie E.
        • Hemmer B.
        A large case-control study on vaccination as risk factor for multiple sclerosis.
        Neurology. 2019; 93: e908-e916https://doi.org/10.1212/WNL.0000000000008012
        • Kelly H.
        • Sokola B.
        • Abboud H.
        Safety and efficacy of COVID-19 vaccines in multiple sclerosis patients.
        J. Neuroimmunol. 2021; : 356https://doi.org/10.1016/J.JNEUROIM.2021.577599
        • Voysey M.
        • Clemens S.A.C.
        • Madhi S.A.
        • et al.
        Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.
        Lancet Lond Engl. 2021; 397: 99-111https://doi.org/10.1016/S0140-6736(20)32661-1
        • Havla J.
        • Schultz Y.
        • Zimmermann H.
        • Hohlfeld R.
        • Danek A.
        • Kümpfel T.
        First manifestation of multiple sclerosis after immunization with the Pfizer-BioNTech COVID-19 vaccine.
        J. Neurol. 2022; 269: 55-58https://doi.org/10.1007/S00415-021-10648-W
        • Mikaeloff Y.
        • Caridade G.
        • Tardieu M.
        • Suissa S.
        Parental smoking at home and the risk of childhood-onset multiple sclerosis in children.
        Brain J Neurol. 2007; 130: 2589-2595https://doi.org/10.1093/BRAIN/AWM198
      2. A Kılınç, C Çam, M F Önsüz, S Metintaş. Prevalence of second-hand smoke exposure in houses in Turkey: a meta-analysis study, Eur. J. Publ. Health, Volume 30, Issue Supplement_5, September 2020, ckaa166.142 H org/10. 1093/eurpub/ckaa166. 142. No Title.

        • Conradi S.
        • Malzahn U.
        • Paul F.
        • et al.
        Breastfeeding is associated with lower risk for multiple sclerosis.
        Mult. Scler. 2013; 19: 553-558https://doi.org/10.1177/1352458512459683
        • Brenton J.N.
        • Engel C.E.
        • Sohn M.W.
        • Goldman M.D.
        Breastfeeding during infancy is associated with a lower future risk of pediatric multiple sclerosis.
        Pediatr. Neurol. 2017; 77: 67-72https://doi.org/10.1016/J.PEDIATRNEUROL.2017.09.007
        • Baldin E.
        • Daltveit A.K.
        • Cortese M.
        • Riise T.
        • Pugliatti M.
        Exposure to breastfeeding and risk of developing multiple sclerosis.
        Int. J. Epidemiol. 2021; 50: 644-651https://doi.org/10.1093/IJE/DYAA250
        • Graves J.S.
        • Chitnis T.
        • Weinstock-Guttman B.
        • et al.
        Maternal and perinatal exposures are associated with risk for pediatric-onset multiple sclerosis.
        Pediatrics. 2017; 139https://doi.org/10.1542/PEDS.2016-2838
      3. (The percentage of feeding time with breast milk of the babies by sex 2014-2019. Access date:)
        • Hacohen Y.
        • Wong Y.Y.
        • Lechner C.
        • et al.
        Disease course and treatment responses in children with relapsing myelin oligodendrocyte glycoprotein antibody-associated disease.
        JAMA Neurol. 2018; 75: 478-487https://doi.org/10.1001/JAMANEUROL.2017.4601
        • Hennes E.M.
        • Baumann M.
        • Schanda K.
        • et al.
        Prognostic relevance of MOG antibodies in children with an acquired demyelinating syndrome.
        Neurology. 2017; 89: 900-908https://doi.org/10.1212/WNL.0000000000004312
        • Mikaeloff Y.
        • Suissa S.
        • Vallée L.
        • et al.
        First episode of acute CNS inflammatory demyelination in childhood: prognostic factors for multiple sclerosis and disability.
        J. Pediatr. 2004; 144: 246-252https://doi.org/10.1016/j.jpeds.2003.10.056
        • Reinhardt K.
        • Weiss S.
        • Rosenbauer J.
        • Gärtner J.
        • von Kries R.
        Multiple sclerosis in children and adolescents: incidence and clinical picture - new insights from the nationwide German surveillance (2009-2011).
        Eur. J. Neurol. 2014; 21: 654-659https://doi.org/10.1111/ENE.12371
        • Banwell B.
        • Ghezzi A.
        • Bar-Or A.
        • Mikaeloff Y.
        • Tardieu M.
        Multiple sclerosis in children: clinical diagnosis, therapeutic strategies, and future directions.
        Lancet Neurol. 2007; 6: 887-902https://doi.org/10.1016/S1474-4422(07)70242-9
        • Abdel-Mannan O.
        • Cortese R.
        • Wassmer E.
        • et al.
        Primary progressive multiple sclerosis presenting under the age of 18 years: fact or fiction?.
        Mult. Scler. 2021; 27: 309-314https://doi.org/10.1177/1352458520910361
        • Gorman M.P.
        • Healy B.C.
        • Polgar-Turcsanyi M.
        • Chitnis T.
        Increased relapse rate in pediatric-onset compared with adult-onset multiple sclerosis.
        Arch. Neurol. 2009; 66: 54-59https://doi.org/10.1001/ARCHNEUROL.2008.505
        • Chitnis T.
        • Aaen G.
        • Belman A.
        • et al.
        Improved relapse recovery in paediatric compared to adult multiple sclerosis.
        Brain J Neurol. 2020; 143: 2733-2741https://doi.org/10.1093/BRAIN/AWAA199
        • Amato M.P.
        • Krupp L.B.
        • Charvet L.E.
        • Penner I.
        • Till C.
        Pediatric multiple sclerosis: cognition and mood.
        Neurology. 2016; 87: S82-S87https://doi.org/10.1212/WNL.0000000000002883
        • Hacohen Y.
        • Mankad K.
        • Chong W.K.
        • et al.
        Diagnostic algorithm for relapsing acquired demyelinating syndromes in children.
        Neurology. 2017; 89: 269-278https://doi.org/10.1212/WNL.0000000000004117
        • Reindl M.
        • Schanda K.
        • Woodhall M.
        • et al.
        International multicenter examination of MOG antibody assays.
        Neurol - Neuroimmunol Neuroinflammation. 2020; 7: e674https://doi.org/10.1212/NXI.0000000000000674
        • Duignan S.
        • Wright S.
        • Rossor T.
        • et al.
        Myelin oligodendrocyte glycoprotein and aquaporin-4 antibodies are highly specific in children with acquired demyelinating syndromes.
        Dev. Med. Child Neurol. 2018; 60: 958-962https://doi.org/10.1111/dmcn.13703
        • Spadaro M.
        • Gerdes L.A.
        • Krumbholz M.
        • et al.
        Autoantibodies to MOG in a distinct subgroup of adult multiple sclerosis.
        Neurol - Neuroimmunol Neuroinflammation. 2016; 3: e257https://doi.org/10.1212/NXI.0000000000000257
        • Fadda G.
        • Armangue T.
        • Hacohen Y.
        • Chitnis T.
        • Banwell B.
        Paediatric multiple sclerosis and antibody-associated demyelination: clinical, imaging, and biological considerations for diagnosis and care.
        Lancet Neurol. 2021; 20: 136-149https://doi.org/10.1016/S1474-4422(20)30432-4
        • Zara P.
        • Floris V.
        • Flanagan E.P.
        • et al.
        Clinical significance of myelin oligodendrocyte glycoprotein autoantibodies in patients with typical MS lesions on MRI.
        Mult Scler J - Exp Transl Clin. 2021; 7205521732110487https://doi.org/10.1177/20552173211048761
        • Held F.
        • Kalluri S.R.
        • Berthele A.
        • Klein A.K.
        • Reindl M.
        • Hemmer B.
        Frequency of myelin oligodendrocyte glycoprotein antibodies in a large cohort of neurological patients.
        Mult Scler J - Exp Transl Clin. 2021; 7205521732110227https://doi.org/10.1177/20552173211022767
        • Waters P.J.
        • Komorowski L.
        • Woodhall M.
        • et al.
        A multicenter comparison of MOG-IgG cell-based assays.
        Neurology. 2019; 92: e1250-e1255https://doi.org/10.1212/WNL.0000000000007096
        • Banwell B.
        • Krupp L.
        • Kennedy J.
        • et al.
        Clinical features and viral serologies in children with multiple sclerosis: a multinational observational study.
        Lancet Neurol. 2007; 6: 773-781https://doi.org/10.1016/S1474-4422(07)70196-5
        • Waubant E.
        • Chabas D.
        • Okuda D.T.
        • et al.
        Difference in disease burden and activity in pediatric patients on brain magnetic resonance imaging at time of multiple sclerosis onset vs adults.
        Arch. Neurol. 2009; 66: 967-971https://doi.org/10.1001/ARCHNEUROL.2009.135
        • Huppke P.
        • Huppke B.
        • Ellenberger D.
        • et al.
        Therapy of highly active pediatric multiple sclerosis.
        Mult. Scler. 2019; 25: 72-80https://doi.org/10.1177/1352458517732843
        • Pohl D.
        • Rostasy K.
        • Reiber H.
        • Hanefeld F.
        CSF characteristics in early-onset multiple sclerosis.
        Neurology. 2004; 63: 1966-1967https://doi.org/10.1212/01.WNL.0000144352.67102.BC
        • McKay K.A.
        • Wickström R.
        • Hillert J.
        • Karrenbauer V.D.
        Cerebrospinal fluid markers in incident pediatric-onset multiple sclerosis: a nationwide study.
        Sci. Rep. 2021; 11https://doi.org/10.1038/S41598-021-97543-6
        • van der Vuurst de Vries R.M.
        • Wong Y.Y.M.
        • Mescheriakova J.Y.
        • et al.
        High neurofilament levels are associated with clinically definite multiple sclerosis in children and adults with clinically isolated syndrome.
        Mult. Scler. 2019; 25: 958-967https://doi.org/10.1177/1352458518775303
        • Ruggieri M.
        • Polizzi A.
        • Pavone L.
        • Grimaldi L.M.E.
        Multiple sclerosis in children under 6 years of age.
        Neurology. 1999; 53: 478-484https://doi.org/10.1212/WNL.53.3.478
        • Nikolic B.
        • Zaletel I.
        • Ivancevic N.
        • et al.
        The usefulness of visual evoked potentials in the assessment of the pediatric multiple sclerosis.
        Eur. J. Paediatr. Neurol. 2022; 36: 130-136https://doi.org/10.1016/J.EJPN.2021.12.005
        • Vidal-Jordana A.
        • Rovira A.
        • Arrambide G.
        • et al.
        Optic nerve topography in multiple sclerosis diagnosis: the utility of visual evoked potentials.
        Neurology. 2021; 96: e482-e490https://doi.org/10.1212/WNL.0000000000011339
        • Chitnis T.
        • Tenembaum S.
        • Banwell B.
        • et al.
        Consensus statement: evaluation of new and existing therapeutics for pediatric multiple sclerosis.
        Mult. Scler. 2012; 18: 116-127https://doi.org/10.1177/1352458511430704
        • Harding K.
        • Williams O.
        • Willis M.
        • et al.
        Clinical outcomes of escalation vs early intensive disease-modifying therapy in patients with multiple sclerosis.
        JAMA Neurol. 2019; 76: 536-541https://doi.org/10.1001/JAMANEUROL.2018.4905
        • Spelman T.
        • Magyari M.
        • Piehl F.
        • et al.
        Treatment escalation vs immediate initiation of highly effective treatment for patients with relapsing-remitting multiple sclerosis: data from 2 different national strategies.
        JAMA Neurol. 2021; 78: 1197-1204https://doi.org/10.1001/JAMANEUROL.2021.2738
        • Johnen A.
        • Elpers C.
        • Riepl E.
        • et al.
        Early effective treatment may protect from cognitive decline in paediatric multiple sclerosis.
        Eur. J. Paediatr. Neurol. 2019; 23: 783-791https://doi.org/10.1016/J.EJPN.2019.08.007
        • Krysko K.
        • Graves J.
        • Rensel M.
        • et al.
        Use of newer disease-modifying therapies in pediatric multiple sclerosis in the US.
        Neurology. 2018; 91: E1778-E1787https://doi.org/10.1212/WNL.0000000000006471
        • Krysko K.M.
        • Graves J.S.
        • Rensel M.
        • et al.
        Real-world effectiveness of initial disease-modifying therapies in pediatric multiple sclerosis.
        Ann. Neurol. 2020; 88: 42-55https://doi.org/10.1002/ANA.25737
        • Yeh E.A.
        • Waubant E.
        • Krupp L.B.
        • et al.
        Multiple sclerosis therapies in pediatric patients with refractory multiple sclerosis.
        Arch. Neurol. 2011; 68: 437-444https://doi.org/10.1001/archneurol.2010.325