Advertisement

Altered anterior insula functional connectivity in adolescent and young women with endometriosis-associated pain: Pilot resting-state fMRI study

  • Author Footnotes
    1 Biobehavioral Pain Innovations Lab.
    Edina Szabo
    Footnotes
    1 Biobehavioral Pain Innovations Lab.
    Affiliations
    Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, USA

    Biobehavioral Pain Innovations Lab, Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA

    Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
    Search for articles by this author
  • Author Footnotes
    1 Biobehavioral Pain Innovations Lab.
    Inge Timmers
    Footnotes
    1 Biobehavioral Pain Innovations Lab.
    Affiliations
    Department of Rehabilitation Medicine, Maastricht University, Maastricht, the Netherlands

    Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
    Search for articles by this author
  • David Borsook
    Affiliations
    Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA

    Department of Radiology, Massachusetts General Hospital, Boston, MA, USA

    Department of Anesthesiology, Harvard Medical School, Boston, MA, USA
    Search for articles by this author
  • Author Footnotes
    2 Contributed equally to this manuscript.
    Laura E. Simons
    Footnotes
    2 Contributed equally to this manuscript.
    Affiliations
    Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
    Search for articles by this author
  • Author Footnotes
    2 Contributed equally to this manuscript.
    Christine B. Sieberg
    Correspondence
    Corresponding author. Biobehavioral Pain Innovations Lab, Boston Children's Hospital, 21 Autumn Street, Office AT110.2, Boston, MA, 02115, USA.
    Footnotes
    2 Contributed equally to this manuscript.
    Affiliations
    Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, USA

    Biobehavioral Pain Innovations Lab, Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA

    Department of Psychiatry, Harvard Medical School, Boston, MA, USA
    Search for articles by this author
  • Author Footnotes
    1 Biobehavioral Pain Innovations Lab.
    2 Contributed equally to this manuscript.
Published:October 28, 2022DOI:https://doi.org/10.1016/j.ejpn.2022.10.004

      Highlights

      • Altered brain function in young patients with endometriosis-associated pain (EAP).
      • Less functional connectivity between the right anterior insula and pain-related regions.
      • Anterior insula and cerebellum connectivity was linked to greater pain intensity.
      • Alterations in the pain regulatory pathways in endometriosis.
      • Endometriosis management should include centrally mediated treatments.

      Abstract

      Background

      Endometriosis is the leading cause of chronic pelvic pain. Alterations in brain functional connectivity have been reported in adult women with endometriosis-associated pain (EAP), however, it is still unknown if similar patterns of changes exist in adolescents. Methods: In this pilot study, resting-state fMRI scans were obtained from 11 adolescent and young women with EAP and 14 healthy female controls. Using a seed-to-voxel approach, we investigated functional connectivity between the anterior insula, medial prefrontal cortex, and the rest of the brain. Furthermore, we explored whether potential functional connectivity differences were correlated with clinical characteristics including disease duration, pain intensity, and different psychosocial factors (pain catastrophizing, fear of pain, functional disability, anxiety, and depression). Results: Our findings revealed that patients with EAP demonstrated significantly decreased connectivity between the right anterior insula and two clusters: one in the right cerebellum, and one in the left middle frontal gyrus compared to controls. Additionally, functional connectivity between the right anterior insula and the right cerebellum was positively associated with pain intensity levels. In patients with EAP, brain changes were also correlated with state anxiety and fear of pain. Conclusions: Our results are relevant not only for understanding the brain characteristics underlying EAP at a younger age, but also in enhancing future pain treatment efforts by supporting the involvement of the central nervous system in endometriosis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Paediatric Neurology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Giudice L.C.
        • Kao L.C.
        Endometriosis.
        Lancet. 2004; 364: 1789-1799https://doi.org/10.1016/S0140-6736(04)17403-5
        • Maddern J.
        • Grundy L.
        • Castro J.
        • Brierley S.M.
        Pain in endometriosis.
        Front. Cell. Neurosci. 2020; 14https://doi.org/10.3389/fncel.2020.590823
        • As-Sanie S.
        • Harris R.E.
        • Harte S.E.
        • Tu F.F.
        • Neshewat G.
        • Clauw D.J.
        Increased pressure pain sensitivity in women with chronic pelvic pain. 2013; 122 (5): 1047-1055https://doi.org/10.1097/AOG.0b013e3182a7e1f5
        • Carey E.T.
        • Martin C.E.
        • Siedhoff M.T.
        • Bair E.D.
        • As-Sanie S.
        Biopsychosocial correlates of persistent postsurgical pain in women with endometriosis.
        Int. J. Gynaecol. Obstet.: Off. Org. Int. Fed. Gynaecol. Obstet. 2014; 124: 169-173https://doi.org/10.1016/j.ijgo.2013.07.033
        • Vercellini P.
        • Fedele L.
        • Aimi G.
        • Pietropaolo G.
        • Consonni D.
        • Crosignani P.G.
        Association between endometriosis stage, lesion type, patient characteristics and severity of pelvic pain symptoms: a multivariate analysis of over 1000 patients.
        Hum. Reprod. (Oxf.). 2007; 22: 266-271https://doi.org/10.1093/humrep/del339
        • Kalia M.
        Brain development: anatomy, connectivity, adaptive plasticity, and toxicity.
        Metab. Clin. Exp. 2008; 57: S2-S5https://doi.org/10.1016/j.metabol.2008.07.009
        • As-Sanie S.
        • Harris R.E.
        • Napadow V.
        • Kim J.
        • Neshewat G.
        • Kairys A.
        • Williams D.
        • Clauw D.J.
        • Schmidt-Wilcke T.
        Changes in regional gray matter volume in women with chronic pelvic pain: a voxel-based morphometry study.
        Pain. 2012; 153: 1006-1014https://doi.org/10.1016/j.pain.2012.01.032
        • As-Sanie S.
        • Kim J.
        • Schmidt-Wilcke T.
        • Sundgren P.C.
        • Clauw D.J.
        • Napadow V.
        • Harris R.E.
        Functional connectivity is associated with altered brain chemistry in women with endometriosis-associated chronic pelvic pain.
        J. Pain : Off. J. Am. Pain. Soc. 2016; 17: 1-13https://doi.org/10.1016/j.jpain.2015.09.008
        • Becerra L.
        • Sava S.
        • Simons L.E.
        • Drosos A.M.
        • Sethna N.
        • Berde C.
        • Lebel A.A.
        • Borsook D.
        Intrinsic brain networks normalize with treatment in pediatric complex regional pain syndrome.
        Neuroimage: Clinica. 2014; 6: 347-369https://doi.org/10.1016/j.nicl.2014.07.012
        • Bhatt R.R.
        • Gupta A.
        • Mayer E.A.
        • Zeltzer L.K.
        Chronic pain in children: structural and resting-state functional brain imaging within a developmental perspective.
        Pediatr. Res. 2020; 88: 840-849https://doi.org/10.1038/s41390-019-0689-9
        • Colon E.
        • Ludwick A.
        • Wilcox S.L.
        • Youssef A.M.
        • Danehy A.
        • Fair D.A.
        • Lebel A.A.
        • Burstein R.
        • Becerra L.
        • Borsook D.
        Migraine in the young brain: adolescents vs. young adults.
        Front. Hum. Neurosci. 2019; 13https://doi.org/10.3389/fnhum.2019.00087
        • Miller M.M.
        • Meints S.M.
        • Hirsh A.T.
        Catastrophizing, pain, and functional outcomes for children with chronic pain: a meta-analytic review.
        Pain. 2018; 159: 2442-2460https://doi.org/10.1097/j.pain.0000000000001342
        • Sullivan M.J.
        • Thorn B.
        • Haythornthwaite J.A.
        • Keefe F.
        • Martin M.
        • Bradley L.A.
        • Lefebvre J.C.
        Theoretical perspectives on the relation between catastrophizing and pain.
        Clin. J. Pain. 2001; 17: 52-64https://doi.org/10.1097/00002508-200103000-00008
        • Simons L.E.
        • Sieberg C.B.
        • Carpino E.
        • Logan D.
        • Berde C.
        The Fear of Pain Questionnaire (FOPQ): assessment of pain-related fear among children and adolescents with chronic pain.
        J. Pain. 2011; 12: 677-686https://doi.org/10.1016/j.jpain.2010.12.008
        • Fisher E.
        • Heathcote L.C.
        • Eccleston C.
        • Simons L.E.
        • Palermo T.M.
        Assessment of pain anxiety, pain catastrophizing, and fear of pain in children and adolescents with chronic pain: a systematic review and meta-analysis.
        J. Pediatr. Psychol. 2018; 43: 314-325https://doi.org/10.1093/jpepsy/jsx103
        • Heathcote L.C.
        • Timmers I.
        • Kronman C.A.
        • Mahmud F.
        • Hernandez J.M.
        • Bentley J.
        • Youssef A.M.
        • Pine D.S.
        • Borsook D.
        • Simons L.E.
        Brain signatures of threat-safety discrimination in adolescent chronic pain.
        Pain. 2020; 161: 630-640https://doi.org/10.1097/j.pain.0000000000001753
        • Timmers I.
        • López-Solà M.
        • Heathcote L.C.
        • Heirich M.
        • Rush G.Q.
        • Shear D.
        • Borsook D.
        • Simons L.E.
        Amygdala functional connectivity mediates the association between catastrophizing and threat-safety learning in youth with chronic pain. 2021; (PAIN)https://doi.org/10.1097/j.pain.0000000000002410
        • Petersen A.C.
        • Crockett L.
        • Richards M.
        • Boxer A.
        A self-report measure of pubertal status: reliability, validity, and initial norms.
        J. Youth Adolesc. 1988; 17: 117-133https://doi.org/10.1007/BF01537962
        • Crombez G.
        • Bijttebier P.
        • Eccleston C.
        • Mascagni T.
        • Mertens G.
        • Goubert L.
        • Verstraeten K.
        The child version of the pain catastrophizing scale (PCS-C): a preliminary validation.
        Pain. 2003; 104: 639-646https://doi.org/10.1016/s0304-3959(03)00121-0
        • Walker L.S.
        • Greene J.W.
        The functional disability inventory: measuring a neglected dimension of child health status.
        J. Pediatr. Psychol. 1991; 16: 39-58https://doi.org/10.1093/jpepsy/16.1.39
        • Spielberger C.D.
        • Edwards C.D.
        • Lushene R.E.
        • Montuori J.
        • Platzek D.
        The State-Trait Anxiety Inventory for Children (Preliminary Manual).
        Consulting Psychologists Press, 1973
        • Kovacs M.
        Rating scales to assess depression in school-aged children.
        Acta Paedopsychiatr. 1981; 46: 305-315
        • Andersson J.L.R.
        • Skare S.
        • Ashburner J.
        How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging.
        Neuroimage. 2003; 20: 870-888https://doi.org/10.1016/S1053-8119(03)00336-7
        • Smith S.M.
        • Jenkinson M.
        • Woolrich M.W.
        • Beckmann C.F.
        • Behrens T.E.J.
        • Johansen-Berg H.
        • Bannister P.R.
        • De Luca M.
        • Drobnjak I.
        • Flitney D.E.
        • Niazy R.K.
        • Saunders J.
        • Vickers J.
        • Zhang Y.
        • De Stefano N.
        • Brady J.M.
        • Matthews P.M.
        Advances in functional and structural MR image analysis and implementation as FSL.
        Neuroimage. 2004; 23: S208-S219https://doi.org/10.1016/j.neuroimage.2004.07.051
        • Whitfield-Gabrieli S.
        • Nieto-Castanon A.
        Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks.
        Brain Connect. 2012; 2: 125-141https://doi.org/10.1089/brain.2012.0073
        • Behzadi Y.
        • Restom K.
        • Liau J.
        • Liu T.T.
        A component based noise correction method (CompCor) for BOLD and perfusion based fMRI.
        Neuroimage. 2007; 37: 90-101https://doi.org/10.1016/j.neuroimage.2007.04.042
        • Desikan R.S.
        • Ségonne F.
        • Fischl B.
        • Quinn B.T.
        • Dickerson B.C.
        • Blacker D.
        • Buckner R.L.
        • Dale A.M.
        • Maguire R.P.
        • Hyman B.T.
        • Albert M.S.
        • Killiany R.J.
        An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.
        Neuroimage. 2006; 31: 968-980https://doi.org/10.1016/j.neuroimage.2006.01.021
        • Lu C.
        • Yang T.
        • Zhao H.
        • Zhang M.
        • Meng F.
        • Fu H.
        • Xie Y.
        • Xu H.
        Insular cortex is critical for the perception, modulation, and chronification of pain.
        Neurosci. Bull. 2016; 32: 191-201https://doi.org/10.1007/s12264-016-0016-y
        • Menon V.
        • Gallardo G.
        • Pinsk M.A.
        • Nguyen V.-D.
        • Li J.-R.
        • Cai W.
        • Wassermann D.
        Microstructural organization of human insula is linked to its macrofunctional circuitry and predicts cognitive control.
        Elife. 2020; 9e53470https://doi.org/10.7554/eLife.53470
        • Uddin L.Q.
        Salience processing and insular cortical function and dysfunction.
        Nat. Rev. Neurosci. 2015; 16: 55-61https://doi.org/10.1038/nrn3857
        • Corbetta M.
        • Patel G.
        • Shulman G.L.
        The reorienting system of the human brain: from environment to theory of mind.
        Neuron. 2008; 58: 306-324https://doi.org/10.1016/j.neuron.2008.04.017
        • Fox M.D.
        • Corbetta M.
        • Snyder A.Z.
        • Vincent J.L.
        • Raichle M.E.
        Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems.
        Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 10046-10051https://doi.org/10.1073/pnas.0604187103
        • Vossel S.
        • Geng J.J.
        • Fink G.R.
        Dorsal and ventral attention systems: distinct neural circuits but collaborative roles.
        Neuroscientist. 2014; 20: 150-159https://doi.org/10.1177/1073858413494269
        • Burgmer M.
        • Pogatzki-Zahn E.
        • Gaubitz M.
        • Stüber C.
        • Wessoleck E.
        • Heuft G.
        • Pfleiderer B.
        Fibromyalgia unique temporal brain activation during experimental pain: a controlled fMRI Study.
        J. Neural. Transm. 2009; 117: 123https://doi.org/10.1007/s00702-009-0339-1
        • Hong J.-Y.
        • Naliboff B.
        • Labus J.S.
        • Gupta A.
        • Kilpatrick L.A.
        • Ashe-McNalley C.
        • Stains J.
        • Heendeniya N.
        • Smith S.R.
        • Tillisch K.
        • Mayer E.A.
        Altered brain responses in subjects with irritable bowel syndrome during cued and uncued pain expectation.
        Neuro Gastroenterol. Motil.: Off. J. Eur. Gastrointest. Motil. Soc. 2016; 28: 127-138https://doi.org/10.1111/nmo.12710
        • Szabó E.
        • Galambos A.
        • Kocsel N.
        • Édes A.E.
        • Pap D.
        • Zsombók T.
        • Kozák L.R.
        • Bagdy G.
        • Kökönyei G.
        • Juhász G.
        Association between migraine frequency and neural response to emotional faces: an fMRI study.
        Neuroimage : Clinica. 2019; 22https://doi.org/10.1016/j.nicl.2019.101790
        • Ossipov M.H.
        • Dussor G.O.
        • Porreca F.
        Central modulation of pain.
        J. Clin. Investig. 2010; 120: 3779-3787https://doi.org/10.1172/JCI43766
        • Staud R.
        The important role of CNS facilitation and inhibition for chronic pain.
        Int. J. Clin. Rheumatol. 2013; 8: 639-646https://doi.org/10.2217/ijr.13.57
        • Tracey I.
        • Mantyh P.W.
        The cerebral signature for pain perception and its modulation.
        Neuron. 2007; 55: 377-391https://doi.org/10.1016/j.neuron.2007.07.012
        • Freund W.
        • Klug R.
        • Weber F.
        • Stuber G.
        • Schmitz B.
        • Wunderlich A.P.
        Perception and suppression of thermally induced pain: a fMRI study.
        SMR (Somatosens. Mot. Res.). 2009; 26: 1-10https://doi.org/10.1080/08990220902738243
        • Lorenz J.
        • Minoshima S.
        • Casey K.L.
        Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation.
        Brain: J. Neurol. 2003; 126: 1079-1091https://doi.org/10.1093/brain/awg102
        • Seminowicz D.A.
        • de Martino E.
        • Schabrun S.M.
        • Graven-Nielsen T.
        Left dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation reduces the development of long-term muscle pain.
        Pain. 2018; 159: 2486-2492https://doi.org/10.1097/j.pain.0000000000001350
        • Seminowicz D.A.
        • Moayedi M.
        The dorsolateral prefrontal cortex in acute and chronic pain.
        J. Pain. 2017; 18: 1027-1035https://doi.org/10.1016/j.jpain.2017.03.008
        • Boggio P.S.
        • Zaghi S.
        • Lopes M.
        • Fregni F.
        Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers.
        Eur. J. Neurol. 2008; 15: 1124-1130https://doi.org/10.1111/j.1468-1331.2008.02270.x
        • Sridharan D.
        • Levitin D.J.
        • Menon V.
        A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks.
        Proc. Natl. Acad. Sci. USA. 2008; 105: 12569-12574https://doi.org/10.1073/pnas.0800005105
        • Fox M.D.
        • Snyder A.Z.
        • Vincent J.L.
        • Corbetta M.
        • Essen D.C.V.
        • Raichle M.E.
        The human brain is intrinsically organized into dynamic, anticorrelated functional networks.
        Proc. Natl. Acad. Sci. USA. 2005; 102: 9673-9678https://doi.org/10.1073/pnas.0504136102
        • Goulden N.
        • Khusnulina A.
        • Davis N.J.
        • Bracewell R.M.
        • Bokde A.L.
        • McNulty J.P.
        • Mullins P.G.
        The salience network is responsible for switching between the default mode network and the central executive network: replication from DCM.
        Neuroimage. 2014; 99: 180-190https://doi.org/10.1016/j.neuroimage.2014.05.052
        • Seeley W.W.
        • Menon V.
        • Schatzberg A.F.
        • Keller J.
        • Glover G.H.
        • Kenna H.
        • Reiss A.L.
        • Greicius M.D.
        Dissociable intrinsic connectivity networks for salience processing and executive control.
        J. Neurosci.: Off. J. Soc. Neurosci. 2007; 27: 2349-2356https://doi.org/10.1523/JNEUROSCI.5587-06.2007
        • Androulakis X.M.
        • Krebs K.
        • Peterlin B.L.
        • Zhang T.
        • Maleki N.
        • Sen S.
        • Rorden C.
        • Herath P.
        Modulation of intrinsic resting-state fMRI networks in women with chronic migraine.
        Neurology. 2017; 89: 163-169https://doi.org/10.1212/WNL.0000000000004089
        • Cottam W.J.
        • Iwabuchi S.J.
        • Drabek M.M.
        • Reckziegel D.
        • Auer D.P.
        Altered connectivity of the right anterior insula drives the pain connectome changes in chronic knee osteoarthritis.
        Pain. 2018; 159: 929-938https://doi.org/10.1097/j.pain.0000000000001209
        • Ichesco E.
        • Schmidt-Wilcke T.
        • Bhavsar R.
        • Clauw D.J.
        • Peltier S.J.
        • Kim J.
        • Napadow V.
        • Hampson J.P.
        • Kairys A.E.
        • Williams D.A.
        • Harris R.E.
        Altered resting state connectivity of the insular cortex in individuals with fibromyalgia.
        J. Pain. 2014; 15 (e1): 815-826https://doi.org/10.1016/j.jpain.2014.04.007
        • Russo A.
        • Silvestro M.
        • Trojsi F.
        • Bisecco A.
        • Micco R.D.
        • Caiazzo G.
        • Nardo F.D.
        • Esposito F.
        • Tessitore A.
        • Tedeschi G.
        Cognitive networks disarrangement in patients with migraine predicts cutaneous allodynia.
        Headache J. Head Face Pain. 2020; 60: 1228-1243https://doi.org/10.1111/head.13860
        • Mehnert J.
        • May A.
        Functional and structural alterations in the migraine cerebellum.
        J. Cerebr. Blood Flow Metabol. 2019; 39: 730-739https://doi.org/10.1177/0271678X17722109
        • Moulton E.A.
        • Schmahmann J.D.
        • Becerra L.
        • Borsook D.
        The cerebellum and pain: passive integrator or active participator?.
        Brain Res. Rev. 2010; 65: 14-27https://doi.org/10.1016/j.brainresrev.2010.05.005
        • Ruscheweyh R.
        • Kühnel M.
        • Filippopulos F.
        • Blum B.
        • Eggert T.
        • Straube A.
        Altered experimental pain perception after cerebellar infarction.
        Pain. 2014; 155: 1303-1312https://doi.org/10.1016/j.pain.2014.04.006
        • Borsook D.
        • Moulton E.A.
        • Tully S.
        • Schmahmann J.D.
        • Becerra L.
        Human cerebellar responses to brush and heat stimuli in healthy and neuropathic pain subjects.
        Cerebellum. 2008; 7: 252-272https://doi.org/10.1007/s12311-008-0011-6
        • Diano M.
        • D'Agata F.
        • Cauda F.
        • Costa T.
        • Geda E.
        • Sacco K.
        • Duca S.
        • Torta D.M.
        • Geminiani G.C.
        Cerebellar clustering and functional connectivity during pain processing.
        Cerebellum. 2016; 15: 343-356https://doi.org/10.1007/s12311-015-0706-4
        • Maleki N.
        • Szabo E.
        • Becerra L.
        • Moulton E.A.
        • Scrivani S.J.
        • Burstein R.
        • Borsook D.
        Ictal and interictal brain activation in episodic migraine: neural basis for extent of allodynia.
        PLoS One. 2021; 16e0244320https://doi.org/10.1371/journal.pone.0244320
        • Moulton E.A.
        • Elman I.
        • Becerra L.R.
        • Goldstein R.Z.
        • Borsook D.
        The cerebellum and addiction: insights gained from neuroimaging research.
        Addiction Biol. 2014; 19: 317-331
        • Moulton E.A.
        • Elman I.
        • Pendse G.
        • Schmahmann J.
        • Becerra L.
        • Borsook D.
        Aversion-related circuitry in the cerebellum: responses to noxious heat and unpleasant images.
        J. Neurosci. 2011; 31: 3795-3804https://doi.org/10.1523/JNEUROSCI.6709-10.2011
        • Schraa-Tam C.K.L.
        • Rietdijk W.J.R.
        • Verbeke W.J.M.I.
        • Dietvorst R.C.
        • van den Berg W.E.
        • Bagozzi R.P.
        • De Zeeuw C.I.
        fMRI activities in the emotional cerebellum: a preference for negative stimuli and goal-directed behavior.
        Cerebellum. 2012; 11: 233-245https://doi.org/10.1007/s12311-011-0301-2
        • Silva K.E.
        • Rosner J.
        • Ullrich N.J.
        • Chordas C.
        • Manley P.E.
        • Moulton E.A.
        Pain affect disrupted in children with posterior cerebellar tumor resection.
        Ann. Clin. Transl. Neurol. 2019; 6: 344-354https://doi.org/10.1002/acn3.709
        • Stoodley C.J.
        • Schmahmann J.D.
        Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies.
        Neuroimage. 2009; 44: 489-501https://doi.org/10.1016/j.neuroimage.2008.08.039
        • Adamaszek M.
        • D'Agata F.
        • Ferrucci R.
        • Habas C.
        • Keulen S.
        • Kirkby K.C.
        • Leggio M.
        • Mariën P.
        • Molinari M.
        • Moulton E.
        • Orsi L.
        • Van Overwalle F.
        • Papadelis C.
        • Priori A.
        • Sacchetti B.
        • Schutter D.J.
        • Styliadis C.
        • Verhoeven J.
        Consensus paper: cerebellum and emotion.
        Cerebellum. 2017; 16: 552-576https://doi.org/10.1007/s12311-016-0815-8
        • Habas C.
        • Kamdar N.
        • Nguyen D.
        • Prater K.
        • Beckmann C.F.
        • Menon V.
        • Greicius M.D.
        Distinct cerebellar contributions to intrinsic connectivity networks.
        J. Neurosci. 2009; 29: 8586-8594https://doi.org/10.1523/JNEUROSCI.1868-09.2009
        • Cifre I.
        • Sitges C.
        • Fraiman D.
        • Muñoz M.Á.
        • Balenzuela P.
        • González-Roldán A.
        • Martínez-Jauand M.
        • Birbaumer N.
        • Chialvo D.R.
        • Montoya P.
        Disrupted functional connectivity of the pain network in fibromyalgia.
        Psychosom. Med. 2012; 74: 55-62https://doi.org/10.1097/PSY.0b013e3182408f04
        • Flodin P.
        • Martinsen S.
        • Löfgren M.
        • Bileviciute-Ljungar I.
        • Kosek E.
        • Fransson P.
        Fibromyalgia is associated with decreased connectivity between pain- and sensorimotor brain areas.
        Brain Connect. 2014; 4: 587-594https://doi.org/10.1089/brain.2014.0274
        • Ikeda E.
        • Li T.
        • Kobinata H.
        • Zhang S.
        • Kurata J.
        Anterior insular volume decrease is associated with dysfunction of the reward system in patients with chronic pain.
        Eur. J. Pain. 2018; 22: 1170-1179https://doi.org/10.1002/ejp.1205
        • Craig A.D.B.
        How do you feel--now? The anterior insula and human awareness.
        Nat. Rev. Neurosci. 2009; 10: 59-70https://doi.org/10.1038/nrn2555
        • Szabo E.
        • Chang Y.-H.C.
        • Shulman J.
        • Sieberg C.B.
        • Sethna N.F.
        • Borsook D.
        • Holmes S.A.
        • Lebel A.A.
        Alterations in the structure and function of the brain in adolescents with new daily persistent headache: a pilot MRI study.
        Headache. 2022; 62: 858-869https://doi.org/10.1111/head.14360
        • Baliki M.N.
        • Geha P.Y.
        • Apkarian A.V.
        Parsing pain perception between nociceptive representation and magnitude estimation.
        J. Neurophysiol. 2009; 101: 875-887https://doi.org/10.1152/jn.91100.2008
        • Coghill R.C.
        • Sang C.N.
        • Maisog J.M.
        • Iadarola M.J.
        Pain intensity processing within the human brain: a bilateral, distributed mechanism.
        J. Neurophysiol. 1999; 82: 1934-1943https://doi.org/10.1152/jn.1999.82.4.1934
        • Starr C.J.
        • Sawaki L.
        • Wittenberg G.F.
        • Burdette J.H.
        • Oshiro Y.
        • Quevedo A.S.
        • Coghill R.C.
        Roles of the insular cortex in the modulation of pain: insights from brain lesions.
        J. Neurosci.: Off. J. Soc. Neurosci. 2009; 29: 2684-2694https://doi.org/10.1523/JNEUROSCI.5173-08.2009
        • Bolwerk A.
        • Seifert F.
        • Maihöfner C.
        Altered resting-state functional connectivity in complex regional pain syndrome.
        J. Pain. 2013; 14 (e8): 1107-1115https://doi.org/10.1016/j.jpain.2013.04.007
        • Selemon L.
        A role for synaptic plasticity in the adolescent development of executive function.
        Transl. Psychiatry. 2013; 3: e238https://doi.org/10.1038/tp.2013.7
        • Uddin L.Q.
        • Supekar K.S.
        • Ryali S.
        • Menon V.
        Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development.
        J. Neurosci.: Off. J. Soc. Neurosci. 2011; 31: 18578-18589https://doi.org/10.1523/JNEUROSCI.4465-11.2011
        • Laufer M.R.
        Current approaches to optimizing the treatment of endometriosis in adolescents.
        Gynecol. Obstet. Invest. 2008; 66: 19-27https://doi.org/10.1159/000148027
        • Laufer M.R.
        • Sanfilippo J.
        • Rose G.
        Adolescent endometriosis: diagnosis and treatment approaches.
        J. Pediatr. Adolesc. Gynecol. 2003; 16: S3-S11https://doi.org/10.1016/s1083-3188(03)00066-4
        • Spear L.P.
        Adolescent neurodevelopment.
        J. Adolesc. Health. 2013; 52: S7-S13https://doi.org/10.1016/j.jadohealth.2012.05.006
        • Arain M.
        • Haque M.
        • Johal L.
        • Mathur P.
        • Nel W.
        • Rais A.
        • Sandhu R.
        • Sharma S.
        Maturation of the adolescent brain.
        Neuropsychiatric Dis. Treat. 2013; 9: 449-461https://doi.org/10.2147/NDT.S39776
        • Casey B.J.
        • Jones R.M.
        • Hare T.A.
        The adolescent brain.
        Ann. N. Y. Acad. Sci. 2008; 1124: 111-126https://doi.org/10.1196/annals.1440.010
        • Tong H.
        • Maloney T.C.
        • Payne M.F.
        • King C.D.
        • Ting T.V.
        • Kashikar-Zuck S.
        • Coghill R.C.
        • López-Solà M.
        Processing of pain by the developing brain: evidence of differences between adolescent and adult females.
        Pain. 2022; (10.1097/j.pain.0000000000002571)https://doi.org/10.1097/j.pain.0000000000002571
        • Eisenberger N.I.
        Identifying the neural correlates underlying social pain: implications for developmental processes.
        Hum. Dev. 2006; 49: 273-293https://doi.org/10.1159/000095580
        • Eisenberger N.I.
        The pain of social disconnection: examining the shared neural underpinnings of physical and social pain.
        Nat. Rev. Neurosci. 2012; 13: 421-434https://doi.org/10.1038/nrn3231
        • Cacioppo S.
        • Frum C.
        • Asp E.
        • Weiss R.M.
        • Lewis J.W.
        • Cacioppo J.T.
        A quantitative meta-analysis of functional imaging studies of social rejection.
        Sci. Rep. 2013; 3: 2027https://doi.org/10.1038/srep02027
        • Coghill R.C.
        • Talbot J.
        • Evans A.
        • Meyer E.
        • Gjedde A.
        • Bushnell M.
        • Duncan G.
        Distributed processing of pain and vibration by the human brain.
        J. Neurosci. 1994; 14: 4095-4108https://doi.org/10.1523/JNEUROSCI.14-07-04095.1994
        • Qiu Y.
        • Noguchi Y.
        • Honda M.
        • Nakata H.
        • Tamura Y.
        • Tanaka S.
        • Sadato N.
        • Wang X.
        • Inui K.
        • Kakigi R.
        Brain processing of the signals ascending through unmyelinated C fibers in humans: an event-related functional magnetic resonance imaging study.
        Cerebral Cortex (New York, N.Y. 2006; 16 (1991): 1289-1295https://doi.org/10.1093/cercor/bhj071
        • Staud R.
        • Rodriguez M.E.
        Mechanisms of disease: pain in fibromyalgia syndrome.
        Nat. Clin. Pract. Rheumatol. 2006; 2: 90-98https://doi.org/10.1038/ncprheum0091
        • Cavanna A.E.
        • Trimble M.R.
        The precuneus: a review of its functional anatomy and behavioural correlates.
        Brain. 2006; 129: 564-583https://doi.org/10.1093/brain/awl004
        • Saviola F.
        • Pappaianni E.
        • Monti A.
        • Grecucci A.
        • Jovicich J.
        • De Pisapia N.
        Trait and state anxiety are mapped differently in the human brain.
        Sci. Rep. 2020; 1011112https://doi.org/10.1038/s41598-020-68008-z
        • Burgmer M.
        • Pogatzki-Zahn E.
        • Gaubitz M.
        • Wessoleck E.
        • Heuft G.
        • Pfleiderer B.
        Altered brain activity during pain processing in fibromyalgia.
        Neuroimage. 2009; 44: 502-508https://doi.org/10.1016/j.neuroimage.2008.09.008
        • Petersen N.
        • Kilpatrick L.A.
        • Goharzad A.
        • Cahill L.
        Oral contraceptive pill use and menstrual cycle phase are associated with altered resting state functional connectivity.
        Neuroimage. 2014; 90: 24-32https://doi.org/10.1016/j.neuroimage.2013.12.016
        • Hidalgo-Lopez E.
        • Mueller K.
        • Harris T.
        • Aichhorn M.
        • Sacher J.
        • Pletzer B.
        Human menstrual cycle variation in subcortical functional brain connectivity: a multimodal analysis approach.
        Brain Struct. Funct. 2020; 225: 591-605https://doi.org/10.1007/s00429-019-02019-z
        • Otomo M.
        • Harada M.
        • Abe T.
        • Matsumoto Y.
        • Abe Y.
        • Kanazawa Y.
        • Miyoshi M.
        • Kabasawa H.
        • Takahashi Y.
        Reproducibility and variability of quantitative cerebral blood flow measured by multi-delay 3D arterial spin labeling according to sex and menstrual cycle.
        J. Med. Invest.: JMI. 2020; 67: 321-327https://doi.org/10.2152/jmi.67.321
        • Wang C.
        • Liu Y.
        • Dun W.
        • Zhang T.
        • Yang J.
        • Wang K.
        • Mu J.
        • Zhang M.
        • Liu J.
        Effects of repeated menstrual pain on empathic neural responses in women with primary dysmenorrhea across the menstrual cycle.
        Hum. Brain Mapp. 2021; 42: 345-356https://doi.org/10.1002/hbm.25226
        • Masuda S.
        • Ichihara K.
        • Yamanishi H.
        • Hirano Y.
        • Tanaka Y.
        • Kamisako T.
        Evaluation of menstrual cycle-related changes in 85 clinical laboratory analytes.
        Ann. Clin. Biochem. 2016; 53: 365-376https://doi.org/10.1177/0004563215617212
        • Derbyshire S.W.G.
        • Osborn J.
        Offset analgesia is mediated by activation in the region of the periaqueductal grey and rostral ventromedial medulla.
        Neuroimage. 2009; 47: 1002-1006https://doi.org/10.1016/j.neuroimage.2009.04.032
        • Yelle M.D.
        • Oshiro Y.
        • Kraft R.A.
        • Coghill R.C.
        Temporal filtering of nociceptive information by dynamic activation of endogenous pain modulatory systems.
        J. Neurosci.: Off. J. Soc. Neurosci. 2009; 29: 10264-10271https://doi.org/10.1523/JNEUROSCI.4648-08.2009
        • Grill J.D.
        • Coghill R.C.
        Transient analgesia evoked by noxious stimulus offset.
        J. Neurophysiol. 2002; 87: 2205-2208https://doi.org/10.1152/jn.00730.2001
        • Lunde C.E.
        • Szabo E.
        • Holmes S.A.
        • Borsook D.
        • Sieberg C.B.
        Commentary: novel use of offset analgesia to assess adolescents and adults with treatment resistant endometriosis-associated pain.
        J. Pain Res. 2020, November 2; (Dove Press)https://doi.org/10.2147/JPR.S276135
        • Sieberg C.B.
        • Lunde C.E.
        • Borsook D.
        Endometriosis and pain in the adolescent- striking early to limit suffering: a narrative review.
        Neurosci. Biobehav. Rev. 2020; 108: 866-876https://doi.org/10.1016/j.neubiorev.2019.12.004