Advertisement

Fetuses and infants with Amyoplasia congenita in congenital Zika syndrome: The evidence of a viral cause. A narrative review of 144 cases

Published:November 08, 2022DOI:https://doi.org/10.1016/j.ejpn.2022.11.002

      Highlights

      • Infants with congenital Zika virus syndrome (CZVS) typically present with severe microcephaly, severe neurodevelopmental retardation and epilepsy, sensorineural hearing loss and optic nerve atrophy and in 10–25% arthrogryposis.
      • Clinical data in most of the cases of CZVS with arthrogryposis, are consistent with classic neurogenic arthrogryposis or Amyoplasia congenita.
      • In cases of CZVS with arthrogryposis, gestational ages at time of Zika infection varies from 4-18th week.
      • Neuropathologic investigation of the spinal cord demonstrates degeneration of lateral corticospinal tracts and of motor neuron cells. Zika virus-proteins and flavivirus-like particles can be detected in cytoplasm of spinal neurons.

      Abstract

      Objectives

      Amyoplasia congenita is the most frequent type of arthrogryposis causing fetal hypokinesia, leading to congenital contractures at birth. The pathogenesis is thought to be impaired blood circulation to the fetus early in pregnancy, with hypotension and hypoxia damaging the anterior horn cells. In animal studies however a prenatal infection with a poliomyelitis-like viral agent was demonstrated. Congenital Zika virus syndrome (CZVS) has recently been described in infants with severe microcephaly, and in 10–25% of cases arthrogryposis.

      Methods

      A search in PubMed for CZVS yielded 124 studies. After a selection for arthrogryposis, 35 papers were included, describing 144 cases. The studies were divided into two categories. 1) Those (87 cases) focussing on imaging or histological data of congenital brain defects, contained insufficient information to link arthrogryposis specifically to lesions of the brain or spinal motor neuron. 2) In the other 57 cases detailed clinical data could be linked to neurophysiological, imaging or histological data.

      Results

      In category 1 the most frequent brain abnormalities in imaging studies were ventriculomegaly, calcifications (subcortical, basal ganglia, cerebellum), hypoplasia of the brainstem and cerebellum, atrophy of the cerebral cortex, migration disorders and corpus callosum anomalies.
      In category 2, in 38 of 57 cases clinical data were indicative of Amyoplasia congenita. This diagnosis was confirmed by electromyographic findings (13 cases), by MRI (37 cases) or histology (12 cases) of the spinal cord. The latter showed small or absent lateral corticospinal tracts, and cell loss and degeneration of motor neuron cells. Zika virus-proteins and flavivirus-like particles were detected in cytoplasm of spinal neurons.

      Conclusion

      The phenotype of arthrogryposis in CZVS is consistent with Amyoplasia congenita. These findings warrant search for an intrauterine infection with any neurotropic viral agent with affinity to spinal motor neurons in neonates with Amyoplasia.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Paediatric Neurology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hageman G.
        • Willemse J.
        Arthrogryposis multiplex congenita, review with comment.
        Neuropediatrics. 1983; 14: 6-11
        • Dahan-Oliel N.
        • Cachecho S.
        • Barnes D.
        • et al.
        International multidisciplinary collaboration toward an annotated definition of arthrogryposis multiplex congenita.
        Am. J. Med. Genet. 2019; 181C: 288-299
        • Cacheco S.
        • Elfassy C.
        • Hamdy R.
        • et al.
        Arthrogryposis multiplex congenita definition: update using an international consensus-based approach.
        Am. J. Med. Genet. 2019; 181C: 280-287
        • Hall J.G.
        Arthrogryposis (multiple congenital contractures): diagnostic approach to etiology, classification, genetics and general principles.
        Eur. J. Med. Genet. 2014; 57: 464-472
        • Drachman D.B.
        • Banker C.A.
        Arthrogryposis multiplex congenita.
        Arch. Neurol. 1961; 5: 77-93
        • Hageman G.
        • Willemse J.
        • van Ketel B.A.
        • Verdonck A.F.
        The pathogenesis of fetal hypokinesia-a neurological study of 75 cases of congenital contractures with emphasis on cerebral lesions.
        Neuropediatrics. 1987; 18: 22-33
        • Hall J.G.
        Amyoplasia revisited.
        Am. J. Med. Genet. 2014; 164A: 700-730
        • Dieterich K.
        • Kimber E.
        • Hall J.G.
        Central Nervous System involvement in arthrogryposis multiplex congenita: overview of causes, diagnosis, and care.
        Am. J. Med. Genet. 2019; 181C: 345-353
        • Lowry R.B.
        • Sibbald B.
        • Bedard T.
        • Hall J.G.
        Prevalence of multiple congenital contractures including arthrogryposis multiplex congenita in Alberta, Canada, and a strategy for classification and coding.
        Birth Defic. Res. (Part A). 2010; 88: 1057-1061
        • Hall J.G.
        Genetic aspects of arthrogryposis.
        Clin. Orthop. Relat. Res. 1985; 194: 44-53
        • Darin N.
        • Kimber E.
        • Kroksmark A.-K.
        • Tulinius M.
        Multiple congenital contractures: birth prevalence, etiology, and outcome.
        J. Pediatr. 2002; 140: 61-67
        • Hoff J.M.
        • Loane M.
        • Gilhus N.E.
        • et al.
        Arthrogryposis multiplex congenita: an epidemiologic study of nearly 9 million births in 24 EUROCAT registers.
        Eur. J. Obstet. Gynecol. Reprod. Biol. 2011; 159: 347-350
        • Laquerriere A.
        • Jaber D.
        • Abiusi E.
        • et al.
        Phenotypic spectrum and genomics of undiagnosed arthrogryposis multiplex congenita.
        J. Med. Genet. 2021; https://doi.org/10.1136/jmedgenet-2020-107595
        • Adam S.
        • Coetzee M.
        • Honey E.M.
        Pena-Shokeir syndrome: current management strategies and palliative care.
        Appl. Clin. Genet. 2018; 11: 111-120
        • Kiefer J.
        • Hall J.G.
        Gene ontology analysis of arthrogryposis (multiple congenital contractures).
        Am. J. Med. Genet. 2019; 181C: 310-326
        • Beecroft S.J.
        • Lombard M.
        • Mowat D.
        • et al.
        Genetics of neuromuscular fetal akinesia in the genomics area.
        J. Med. Genet. 2018; 55: 505-514
        • Dahan-Oliel N.
        • van Bosse H.J.P.
        • Bedard T.
        • et al.
        Research platform for children with arthrogryposis multiplex congenita: findings from the pilot registry.
        Am. J. Med. Genet. 2019; 181C: 427-435
        • Kamien B.
        • Zankl A.
        • Gabbett M.
        Septo-optic dysplasia and associations with Amyoplasia and gastroschisis.
        Birth Defic. Res. Part A. 2010; 88: 497-501
        • LeTanno P.
        • Latypova X.
        • Rendu J.
        • et al.
        Diagnostic workup in children with arthrogryposis: description of practices from a single reference centre, comparison with literature and suggestion of recommendations.
        J. Med. Genet. 2021; 181: 337-344
        • Hall J.G.
        • Kimber E.
        • van Bosse Hjp
        Arthrogryposis supplement: genetics and classifications.
        J. Pediatr. Orthop. 2017; 5: S4-S8
        • Sells J.M.
        • Jaffe K.M.
        • Hall J.G.
        Amyoplasia, the most common type of arthrogryposis: the potential for good outcome.
        An. Pediatr. 1996; 97: 225-231
        • Mercuri E.
        • Manzur A.
        • Main M.
        • et al.
        Is there post-natal muscle growth in amyoplasia? A sequential MRI study.
        Neuromuscul. Disord. 2009; 19: 444-445
        • Kroksmark A.-K.
        • Kimber E.
        • Jerre R.
        • et al.
        Muscle function and motor function in Amyoplasia.
        Am. J. Med. Genet. 2006; 140A: 1757-1767
        • Gaitanis J.N.
        • McMillan H.J.
        • Wu A.
        • Darras B.T.
        Electrophysiologic evidence for anterior horn cell disease in Amyoplasia.
        Pediatr. Neurol. 2010; 43: 142-147
        • Dieterich K.
        • LeTanno P.
        • Kimber E.
        • et al.
        The diagnostic work-up in a patient with AMC: overview of the clinical evaluation and paraclinical analyses with review of the literature.
        Am. J. Med. Genet. C. 2019; 181C: 337-344
        • Hageman G.
        • Ippel E.P.F.
        • Beemer F.A.
        • et al.
        The diagnostic management of newborns with congenital contractures: a nosologic study of 75 cases.
        Am. J. Med. Genet. 1988; 30: 883-904
        • Hageman G.
        • Ramaekers VTh
        • Hilhorst B.G.J.
        • Rozeboom A.R.
        Congenital vervical spinal muscular atrophy: a non-familial, non-progressive condition of the upper limbs.
        J. Neurol. Neurosurg. Psychiatry. 1993; 56: 365-368
        • Kaiboriboom K.
        • Hayat G.R.
        Congenital cervical spinal atrophy: an intrauterine hypoxic insult.
        Neuropediatrics. 2001; 32: 330-334
        • Clarren S.K.
        • Hall J.G.
        Neuropathologic findings in the spinal cords of 10 infants with arthrogryposis.
        J. Neurol. Sci. 1983; 58: 89-102
        • Banker B.Q.
        Arthrogryposis multiplex congenita: spectrum of pathologic changes.
        Hum. Pathol. 1986; 17: 656-672
      1. Wynne-Davies R, Williams PF, O'Connor JCB. The 1960s epidemic of arthrogryposis multiplex congenita. J. Bone Joint Surg.; 63B(1): 76-82

        • Konstantinidou A.
        • Anninos H.
        • Spanakis N.
        Transplacental infection of Coxsackievirus B3-pathological findings in the fetus.
        J. Med. Virol. 2007; 79: 754-757
        • van der Linden V.
        • Leite Rolim Filho E.
        • Gomes Lins O.
        • et al.
        Congenital Zika syndrome with arthrogryposis: retrospective case series study.
        BMJ. 2016; 354: i3899
        • Pomar L.
        • Musso D.
        • Malinger G.
        • et al.
        Zika virus during pregnancy: from maternal exposure to congenital Zika virus syndrome.
        Prenat. Diagn. 2019; 39: 420-430
        • Matos Ishigami Alvino A.C.
        • Rocha Medeiros de Mello L.
        • do Amaral Meneses Meira de Oliveira J.
        Association of arthrogryposis in neonates with microcephaly due to Zika virus- a case serie.
        Rev. Bras. Saúde Materno Infant. 2016; 16: 583-588
        • Lage M.-L.C.
        • de Carvalho A.L.
        • Ventura P.A.
        • et al.
        Clinical, neuroimaging, and neurophysiological findings in children with microcephaly related to congenital Zika virus infection.
        Int. J. Environ. Res. Publ. Health. 2019; 16: 309
        • van der Linden V.
        • Petribu N.C.
        • Pessoa A.
        • et al.
        Association of severe hydrocephalus with congenital Zika syndrome.
        JAMA Neurol. 2019; 76: 203-210
        • Perez S.
        • Tato R.
        • Cabrera J.J.
        • et al.
        Confirmed case of Zika virus congenital infection, Spain, march 2016.
        Euro Surveill. 2016; 21 (pii=30261)
        • Brasil P.
        • Pereira J.P.
        • Moreira M.E.
        • et al.
        Zika virus infection in pregnant women in Rio de Janeiro.
        N. Engl. J. Med. 2016; 375: 2321-2334
        • Martines R.B.
        • Bhatnagar J.
        • de Oliveira Ramos A.M.
        • et al.
        Pathology of congenital Zika syndrome in Brazil: a case series.
        Lancet. 2016; 388: 898-904
        • Carvalho F.H.C.
        • Cordeiro K.M.
        • Peixoto A.B.
        • et al.
        Associated ultrasonographic findings in fetuses with microcephaly because of suspected Zika virus (ZIKV) infection during pregnancy.
        Prenat. Diagn. 2016; 36: 882-887
        • Van der Linden V.
        • Pessoa A.
        • Dobyns W.
        • et al.
        Description of 13 infants born during october 2015-januari 2016 with congenital Zika virus infection without microcephaly at birth- Brazil.
        MMWR (Morb. Mortal. Wkly. Rep.). 2016; 65: 1343-1348
        • Meneses J.A.
        • Ishigami A.C.
        • Medeiros de Mello L.
        • et al.
        Lessons learned at the epicenter of Brazil's congenital Zika epidemic: evidence from 87 confirmed cases.
        Clin. Infect. Dis. 2017; 64: 1302-1308
        • Fernandez M.P.
        • Parra Saad E.
        • Martinez M.O.
        • et al.
        Ocular histopathologic features of congenital Zika syndrome.
        JAMA Ophthalmol. 2017; 135: 1163-1169
        • Sousa A.Q.
        • Cavalcante D.I.M.
        • Franco L.M.
        • et al.
        Postmortem findings for 7 neonates with congenital Zika virus infection.
        Emerg. Infect. Dis. 2017; 23: 1164-1167
        • Souza A.S.
        • Cordeiro M.T.
        • Meneses J.A.
        • et al.
        Clinical and laboratory diagnosis of congenital Zika virus syndrome and diaphragmatic unilateral palsy: case report.
        Rev. Bras. Saúde Matern. Infant. Recife. 2016; 16: 467-473
        • van der Linden V.
        • van der Linden H.
        • Carvalho Leal M.
        • et al.
        Discordant clinical outcomes of congenital Zika virus infection in twin pregnancies.
        Arq. Neuropsiquiatr. 2017; 75: 381-386
        • Freitas B.P.
        • Ko A.I.
        • Khouri R.
        • et al.
        Glaucoma and congenital Zika syndrome.
        Ophthalmol. Times. 2017; 124: 407-408
        • Sarno M.
        • Sacramento G.A.
        • Khouri R.
        • et al.
        Zika virus infection and stillbirths: a case of hydrops fetalis, hydranencephaly and fetal demise.
        PLoS Neglected Trop. Dis. 2016; 10e0004517
        • Zin A.A.
        • Tsui I.
        • Rossetto J.
        • et al.
        Screening criteria for ophthalmic manifestations of congenital Zika virus infection.
        JAMA Pediatr. 2017; 171: 847-854
        • Cachay R.
        • Schwalb A.
        • Watanabe T.
        • et al.
        Case report: multiorgan involvement with congenital Zika syndrome.
        Am. J. Trop. Med. Hyg. 2020; 103: 1656-1659
        • Alvino I.A.C.
        • Medeiros de Mello L.R.
        • Meneses Meira de Oliveira J.A.
        Association of arthrogryposis in neonates with microcephaly due to Zika virus-a case serie.
        Rev. Bras. Saúde Matern. Infant. Recife. 2016; 16: 83-88
        • Ho C.-H.
        • Castillo N.
        • Encinales L.
        • et al.
        Second-trimester ultrasound and neuropathologic findings in congenital Zika virus infection.
        Pediatr. Infect. Dis. J. 2018; 37: 1290-1293
        • Sarno M.
        • Aquino M.
        • Pimentel K.
        • et al.
        Progressive lesions of central nervous system in microcephalic fetuses with suspected congenital Zika virus syndrome.
        Ultrasound Obstet. Gynecol. 2017; 50: 717-722
        • Pomar L.
        • Malinger G.
        • Benoist G.
        • et al.
        Association between Zika virus and fetopathy: a prospective cohort study in French Guiana.
        Ultrasound Obstet. Gynecol. 2017; 49: 729-736
        • Aragão F.V.M.
        • van der Linden V.
        • Petribu N.C.
        • et al.
        Congenital Zika syndrome. The main cause of death and correspondence between brain CT and postmortem histological section findings.
        Top. Magn. Reson. Imag. 2019; 28: 29-33
        • Besnard M.
        • Eyrolle-Guignot D.
        • Guillemette-Artur P.
        • et al.
        Congenital cerebral malformations and dysfunction in fetuses and newborns following the 2013 to 2014 Zika virus epidemic in French Polynesia.
        Euro Surveill. 2016; 21 (pii=30181)
        • Sanz Cortes M.
        • Rivera A.M.
        • Yepez M.
        • et al.
        Clinical assessment and brain findings in a cohort of mothers, fetuses and infants infected with Zika virus.
        Am. J. Obstet. Gynecol. 2018; 218: 1-36
        • Tellechea A.L.
        • Luppo V.
        • Morales M.A.
        • et al.
        Surveillance of microcephaly and selected brain anomalies in Argentina: relationship with Zika virus and other congenital infections.
        Birth Def. Res. 2018; https://doi.org/10.1002/bdr2.1347
        • Serpa S.C.
        • de Melo A.C.
        • Lins O.G.
        • et al.
        Orthopedic findings in arthrogryposis and congenital Zika syndrome: a case series.
        Birth Def. Res. 2020; 112: 385-392
        • Chimelli L.
        • Melo A.S.
        • Avvad-Portari E.
        • et al.
        The spectrum of neuropathological changes associated with congenital Zika virus infection.
        Acta Neuropathol. 2017; 133: 983-999
        • Aragão M.F.
        • Brainer-Lima A.M.
        • Holanda A.C.
        • et al.
        Spectrum of spinal cord, spinal root, and brain MRI abnormalities in congenital Zika syndrome with and without arthrogryposis.
        Am. J. Neuroradiol. 2017; 38: 1045-1053
        • del Campo M.
        • Feitosa I.M.L.
        • Ribeiro E.M.
        • et al.
        The phenotypic spectrum of congenital Zika syndrome.
        Am. J. Med. Genet. 2017; 173: 841-857
        • Melo A.S.
        • Aguiar R.S.
        • Ramos Amorim M.M.
        • et al.
        Congenital Zika virus infection beyond neonatal microcephaly.
        JAMA Neurol. 2016; 73: 1407-1416
        • Ramalho F.S.
        • Yamamoto A.Y.
        • da Silva L.L.
        • et al.
        Congenital Zika virus infection induces severe spinal cord injury.
        Clin. Infect. Dis. 2017; 65: 687-689
        • Zacharias N.
        • Whitty J.
        • Noblin S.
        • et al.
        First neonatal demise with travel-associated Zika virus infection in the United States of America.
        Am. J. Perinatol. Rep. 2017; 7: e68-e73
        • Oliveira-Szejnfeld P.S.
        • Levine D.
        • Melo A.S.
        • et al.
        Congenital brain abnormalities and Zika virus: what the radiologist can expect to see prenatally and postnatally.
        Radiol. 2016; 281: 203-218
        • Dávila-Castrodad N.M.
        • Reyes-Bou Z.
        • Correa-Rivas M.
        • et al.
        First autopsy of a newborn with congenital Zika syndrome in Puerto Rico.
        PRHSJ. 2018; 37: S81-S84
        • Contreras-Capetillo S.N.
        • Palma-Baquedano H.A.M.
        • Valadéz-González N.
        • et al.
        Case report: congenital arthrogryposis and unilateral absences of distal arm in congenital Zika syndrome.
        Front. Med. 2021; 8499016
        • James-Powell T.
        • Brown Y.
        • Christie C.D.C.
        • et al.
        Trends of microcephaly and severe arthrogryposis in three urban hospitals following the Zika, Chikungunya and Dengue fever epidemics of 2016 in Jamaica.
        WIMJ Open. 2018; 5: 33
        • Parsonson I.M.
        • Della-Porta A.J.
        • Snowdon W.A.
        Congenital abnormalities in newborn lambs after infection of pregnant sheep with Akabane virus.
        Infect. Immun. 1977; 15: 254-262
        • Konno S.
        • Nakagawa M.
        Akabane disease in cattle: congenital abnormalities caused by viral infection.
        Exp. dis. Vet. Pathol. 1982; 19: 267-279
        • Alsaad K.M.
        • Alautaish H.H.
        • Alamery M.A.
        Congenital arthrogryposis-hydranencephaly syndrome caused by Akabane virus in newborn calves of Basrah Governorate, Iraq.
        Vet. World. 2017; 10: 1143-1148
        • Al-Salihi K.A.
        • Al-dabhawi A.H.
        Congenital abnormalities and arthrogryposis in newly born lambs in Al Muthanna province Iraq. Suspicion of Akabane virus infection.
        Braz. J. Vet. Res. Anim. Sci. 2019; 56e154854
        • Tsuda T.
        • Yoshida K.
        • Ohashi S.
        • et al.
        Arthrogryposis, hydranencephaly and cerebellar hypoplasia syndrome in neonatal calves resulting from intrauterine infection with Aino virus.
        Vet. Res. 2004; 35: 531-538
        • Collins A.B.
        • Doherty M.L.
        • Barrett D.J.
        • Mee J.F.
        Schmallenberg virus: a systematic international review (2011-2019) from an Irish perspective.
        Ir. Vet. J. 2019; 72: 9
        • van den Brom R.
        • Luttikholt S.J.M.
        • Lievaart-Peterson K.
        • et al.
        Epizootic of ovine congenital malformations associated with Schmallenberg virus infection.
        Tijdschr. Diergeneeskd. 2012; 137: 106-111
        • Peperkamp K.
        • Dijkman R.
        • van Maanen C.
        • et al.
        Polioencephalomyelitis in a calf due to infection with Schmallenberg virus.
        Vet. Rec. 2012; https://doi.org/10.1136/vr.e3795
        • Duffy M.R.
        • Chen T.H.
        • Hancock W.T.
        • et al.
        Zika virus outbreak on Yap island, Federated States of Micronesia.
        N. Engl. J. Med. 2009; 360: 2536-2543
        • Musso D.
        Zika virus transmission from French Polynesia to Brazil.
        Emerg. Infect. Dis. 2015; 21: 1887
        • Teixeira M.G.
        • da Conceição N Costa M.
        • de Oliveira W.K.
        • et al.
        The epidemic of Zika virus-related microcephaly in Brazil: detection, control, etiology, and future scenarios.
        Am. J. Publ. Health. 2016; 106: 601-605
        • Lannuzel A.
        • Fergé J.-L.
        • Lobjois Q.
        • et al.
        Long-term outcome in neuroZika.
        Neurol. 2019; 92: e2406-e2420
        • Musso D.
        • Ko A.I.
        • Baud D.
        Zika virus infection-after the pandemic.
        N. Engl. J. Med. 2019; 381: 1444-1457
        • Moron A.F.
        • Cavalheiro S.
        • Milani H.J.F.
        • et al.
        Microcephaly associated with maternal Zika virus infection.
        BJOG. 2016; 123: 1265-1269
        • Culjat M.
        • Darling S.E.
        • Nerurkar V.R.
        • et al.
        Clinical and imaging findings in an infant with Zika embryopathy.
        Clin. Infect. Dis. 2016; 63: 805-811
        • Honein M.A.
        • Dawson A.L.
        • Petersen E.E.
        • et al.
        Birth defects among fetuses and infants of US women with evidence of possible Zika virus infection during pregnancy.
        JAMA. 2017; 317: 59-68
        • Passi D.
        • Sharma S.
        • Dutta S.R.
        • Ahmed M.
        Zika virus diseases- the new face of an ancient enemy as global public health emergency (2016): brief review and recent updates.
        Int. J. Prev. Med. 2017; 8: 6
        • Mlakar J.
        • Korva M.
        • Tul N.
        • et al.
        Zika virus associated with microcephaly.
        N. Engl. J. Med. 2016; 374: 951-958
        • Musso D.
        • Roche C.
        • Robin E.
        • et al.
        Potential sexual transmission of Zika virus.
        Emerg. Infect. Dis. 2015; 21: 359-362
        • Afolabi L.O.
        • Sani M.M.
        • Okunowo W.O.
        A review of the incidence, interaction, and future perspective on Zika virus.
        J Basic Clin. Reprod. Sci. 2016; 5: 61-74
        • Goorhuis A.
        • von Eije K.J.
        • Douma R.A.
        • et al.
        Zika virus and the risk of imported infection in returned travelers: implications for clinical care.
        Trav. Med. Infect. Dis. 2016; 14: 13-15
        • Tappe D.
        • Rissland J.
        • Gabriel M.
        • et al.
        First case of laboratory-confirmed Zika virus infection imported into Europe, November 2013.
        Euro Surveill. 2014; 19: pii=20685
        • Samarasekera U.
        • Triunfol M.
        Concern over Zika virus grips the world.
        Lancet. 2016; 387: 521-524
        • de Melo Marques V.
        • Sousa Santos C.
        • Godinho Santiago I.
        • et al.
        Neurological complications of congenital Zika virus infection.
        Pediatr. Neurol. 2019; 91: 3-10
        • Schaub B.
        • Gueneret M.
        • Jolivet E.
        • et al.
        Ultrasound imaging for identification of cerebral damage in congenital Zika virus syndrome: a case series.
        Lancet Child Adolesc. Health. 2017; 1: 45-55
        • Pone M.V.
        • Pone S.M.
        • Zin A.A.
        • et al.
        Zika virus infection in children: epidemiology and clinical manifestations.
        Childs Nerv. Syst. 2018; 34: 63-71
        • Veiga R.V.
        • Schuler-Faccini L.
        • França G.V.A.
        • et al.
        Classification algorithm for congenital Zika syndrome: characterizations, diagnosis and validation.
        Nat. Sci. Rep. 2021; 11: 6770
        • Alves da Cunha A.J.L.
        • de Magalhães-Barbosa M.C.
        • Lima-Setta F.
        • et al.
        Microcephaly case fatality rate associated with Zika virus infection in Brazil.
        Pediatr. Infect. Dis. J. 2017; 36: 528-530
        • Paixao E.S.
        • Cardim L.L.
        • da Conceição N Costa M.
        • et al.
        Congenital Zika Syndrome: a Nationwide Cohort Study in Brazil.
        2015-2018
        • Carvalho A.
        • Brites C.
        • Mochida G.
        • et al.
        Clinical and neurodevelopmental features in children with cerebral palsy and probable congenital Zika.
        Brain Dev. 2019; 41: 587-594
        • Cranston J.S.
        • Tiene S.F.
        • Nielsen-Saines K.
        • et al.
        Association between antenatal exposure to Zika virus and anatomical and neurodevelopmental abnormalities in children.
        JAMA Netw. Open. 2020; 3e209303
        • Lemos de Carvalho A.
        • Ventura P.
        • Taguchi T.
        • et al.
        Cerebral palsy in children with congenital Zika syndrome: a 2 year neurodevelopmental follow-up.
        J. Child Neurol. 2020; 35: 202-207
        • Pessoa A.
        • van der Linden V.
        • Yeargin-Allsopp M.
        • et al.
        Motor abnormalities and epilepsy in infants and children with evidence of congenital Zika virus infection.
        An. Pediatr. 2018; 141e20172038
        • Horovitz D.D.G.
        • Pone M.V.S.
        • Pone S.M.
        • et al.
        Cranial bone collapse in microcephalic infants prenatally exposed to Zika virus infection.
        Neurol. 2016; 87: 118-119
        • Leal M.C.
        • Muniz L.F.
        • Caldas Neto S.S.
        • et al.
        Sensorineural hearing loss in a case of congenital Zika virus.
        Braz J. Otorhinolaryngol. 2020; 86: 513-515
        • Ventura C.V.
        • Maia M.
        • Bravo-Filho V.
        • et al.
        Zika virus in Brazil and macular atrophy in a child with microcephaly.
        Lancet. 2016; 387: 228
        • Saad T.
        • PennaeCosta A.A.
        • Veiga de Goes F.
        • et al.
        Neurological manifestations of congenital Zika virus infection.
        Childs Nerv. Syst. 2018; 34: 73-78
        • van der Linden H.
        • Carvalho M.D.
        • van der Linden V.
        • et al.
        Epilepsy profile in infants with congenital Zika virus infection.
        N. Engl. J. Med. 2018; 379: 9
        • Rua E.C.
        • Artimos de Oliveira S.
        • Artimos de Oliveira Vianna R.
        • et al.
        Two-year follow-up of children with congenital Zika syndrome: the evolution of clinical patterns.
        Eur. J. Pediatr. 2022; 181: 991-999
        • Filges I.
        • Tercanli S.
        • Hall J.G.
        Fetal arthrogryposis: challenges and perspectives for prenatal detection and management.
        Am. J. Med. Genet. C. 2019; 181C: 327-336
        • Tjon J.K.
        • Tan-Sindhunata M.B.
        • Bugiani M.
        • et al.
        Care pathway for foetal joint contractures, foetal akinesia deformation sequence, and arthrogryposis multiplex congenita.
        Fetal Diagn. Ther. 2021; https://doi.org/10.1159/000520869
        • Parra-Saavedra M.
        • Reefhuis J.
        • Piraquive J.P.
        • et al.
        Serial head and brain imaging og 17 fetuses with confirmed Zika virus infection in Colombia, South America.
        Obstet. Gynecol. 2017; 130: 207-212
        • Ferreira L.L.
        • Aguila Ticona J.P.
        • Silveira-Mattos P.S.
        • et al.
        Clinical and biochemical features of hypopituitarism among Brazilian children with Zika virus-induced microcephaly.
        JAMA Netw. Open. 2021; 4https://doi.org/10.1001/jamanetworkopen.2021.9878
        • de Aragão F.V.M.
        • van der Linden V.
        • Mertens Brainer-Lima A.
        • et al.
        Clinical features and neuroimaging (CT and MRI) findings in presumed Zika virus related congenital infection and microcephaly: retrospective case series study.
        BMJ. 2016; 353: i1901
        • Freitas D.A.
        • Souza_Santos R.
        • Carvalho L.M.
        • et al.
        Congenital Zika syndrome: a systematic review.
        PLoS One. 2020; 15e0242367
        • Aragão M.F.
        • Holanda A.C.
        • Brainer-Lima A.M.
        • et al.
        Non microcephalic infants with congenital Zika syndrome suspected only after neuroimaging evaluation compared with those with microcephaly at birth and postnatally: how large is the Zika virus "iceberg.
        Am. J. Neuroradiol. 2017; 38: 1427-1434
        • Cavalcante T.B.
        • Costa Ribeiro M.R.
        • da Silva Sousa P.
        • et al.
        Congenital Zika syndrome: growth, clinical and motor development outcomes up to 36 months of age and differences according to microcephaly at birth.
        Int. J. Infect. Dis. 2021; 105: 399-408
        • Abtibol-Bernardino M.R.
        • de Oliveira G.A.
        • et al.
        • Albuquerque de Almeida Peixoto LdeF
        Neurological findings in children without congenital microcephaly exposed to Zika virus in utero: a case series study.
        Viruses. 2020; 12: 1335
        • Soares de Souza A.
        • Moraes Dias C.
        • Del Campo Braojos Braga F.
        • et al.
        Fetal infection by Zika virus in the third trimester: report of 2 cases.
        Clin. Infect. Dis. 2016; 63: 1622-1625
        • Martins-Filho P.R.
        • Souza Tavares Cs
        • Araújo Carvalho A.C.
        • et al.
        Association between arthrogryposis and mortality in infants with congenital Zika syndrome: a systematic review and meta-analysis.
        Pediatr. Neurol. 2020; 110: 20-24
        • Gouveia de Melo A.C.M.
        • van der Linden V.
        • Serpa S.C.
        • et al.
        Electromyography in congenital Zika syndrome.
        J. Clin. Neurophysiol. 2021; https://doi.org/10.1097/WNP.0000000000000893
        • Chimelli L.
        • Pone S.M.
        • Avvad-Portari E.
        • et al.
        Persistence of Zika virus after birth: clinical, virological, neuroimaging, and neuropathological documentation in a 5 month infant with congenital Zika syndrome.
        J. Neuropathol. Exp. Neurol. 2018; 77: 193-198
        • Rubin E.J.
        • Greene M.F.
        • Baden L.R.
        Zika virus and microcephaly.
        N. Engl. J. Med. 2016; 374: 984-985
        • Ferreira Rocha N.A.
        • de Campos A.C.
        • Ferreira Rocha F.C.
        • dos Santos Silva F.P.
        Microcephaly and Zika virus: neuroradiological aspects, clinical findings and a proposed framework for early evaluation of child development.
        Infant Behav. Dev. 2017; 49: 70-82
        • Robinson N.
        • Galvan E.E.
        • Zavala Trujillo I.G.
        • Zavala-Cerna M.G.
        Congenital Zika syndrome: pitfalls in the placental barrier.
        Rev. Med. Virol. 2018; 28e1985
        • Cugola F.R.
        • Fernandes I.R.
        • Russo F.B.
        • et al.
        The Brazilian Zika virus strain causes birth defects in experimental models.
        Nature. 2016; 534: 267
        • Hughes B.W.
        • Addanki K.C.
        • Sriskanda A.N.
        • et al.
        Infectivity of immature neurons to Zika virus: a link to congenital Zika syndrome.
        EBiomed. 2016; 10: 65-70
        • Ho C.-Y.
        • Ames H.M.
        • Tipton A.
        • et al.
        Differential neuronal susceptibility and apotosis in congenital Zika virus infection.
        Ann. Neurol. 2017; 82: 121-127
        • Fernandes N.C.
        • Nogueira J.S.
        • Réssio R.A.
        • et al.
        Experimental Zika virus infection induces spinal cord injury and encephalitis in newborn Swiss mice.
        Exp. Toxicol. Pathol. 2017; 69: 63-71
        • Shi Y.
        • Li S.
        • Wu Q.
        • et al.
        Vertical transmission of the Zika virus causes neurological disorders in mouse offspring.
        Sci. Rep. 2018; 8: 3541
        • Bayram Y.
        • Karaca E.
        • Akdemir Z.C.
        • et al.
        Molecular etiology of arthrogryposis in multiple families of mostly Turkish origin.
        J. Clin. Invest. 2016; 126: 762-775
        • Bingham P.M.
        • Shen N.
        • Rennert H.
        • et al.
        Arthrogryposis due to infantile neuronal degeneration associated with deletion of the SMNT gene.
        Neurol. 1997; 49: 848-851
        • Frints S.G.M.
        • Hennig F.
        • Colombo R.
        • et al.
        Deleterious de novo variants of X-linked ZC4H2 in females cause a variable phenotype with neurogenic arthrogryposis multiplex congenita.
        Hum. Mutat. 2019; 40: 2270-2285
        • Reinstein E.
        • Drasinover V.
        • Lotan R.
        • et al.
        Mutations in ERGIC1 cause arthrogryposis multiplex congenita, neuropathic type.
        Clin. Genet. 2018; 93: 160-163
        • Laquerriere A.
        • Gonzales M.
        • Saillour Y.
        • et al.
        De novo TUBB2B mutation causes fetal akinesia deformation sequence with microlissencephaly: an unusual presentation of tubulinopathy.
        Eur. J. Med. Genet. 2016; 59: 249-256
        • Smith C.
        • Parboosingh J.S.
        • Boycott K.M.
        • et al.
        Expansion of the GLE1-associated arthrogryposis multiplex congenita clinical spectrum.
        Clin. Genet. 2017; 91: 426-430
        • Said E.
        • Chong J.X.
        • Hempel M.
        • et al.
        Survival beyond the perinatal period expands the phenotypes caused by mutations in GLE1.
        Am. J. Med. Genet. 2017; 173A: 3098-3103
        • Frijns C.J.M.
        • van Deutekom J.
        • Frants R.R.
        • Jennekes F.G.I.
        Dominant congenital benign spinal muscular atrophy.
        Muscle Nerve. 1994; 17: 192-197
        • Fleury P.
        • Hageman G.
        A dominantly inherited lower motor neuron disorder presenting at birth with associated arthrogryposis.
        J. Neurol. Neurosurg. Psychiatry. 1985; 48: 1037-1048
        • van der Vleuten A.J.
        • van Ravenswaay-Arts C.M.
        • Frijns C.J.
        • et al.
        Localisation of the gene for a dominant congenital spinal muscular atrophy predominantly affecting the lower limbs to chromosome 12q23-q24.
        Eur. J. Hum. Genet. 1998; 6: 376-382
        • Oates E.C.
        • Reddel S.
        • Rodriquez M.L.
        • et al.
        Autosomal dominant congenital spinal muscular atrophy: a true form of spinal muscular atrophy caused by early loss of anterior horn cells.
        Brain. 2012; 135: 1714-1723
        • Scoto M.
        • Rossor A.M.
        • Harms M.B.
        • et al.
        Novel mutations expand the clinical spectrum of DYNC1H1-associated spinal muscular atrophy.
        Neurol. 2015; 84: 668-679
        • Rossor A.M.
        • Oates E.C.
        • Salter H.K.
        • et al.
        Phenotypic and molecular insights into spinal muscular atrophy due to mutations in BICD2.
        Brain. 2015; 138: 293-310
        • Rasmussen S.A.
        • Jamieson D.J.
        • Honein M.A.
        • Petersen L.R.
        Zika virus and birth defects-reviewing the evidence for causality.
        N. Engl. J. Med. 2016; 374: 1981-1987
        • Moore C.A.
        • Staples J.E.
        • Dobyns W.B.
        • et al.
        Characterizing the pattern of anomalies in congenital Zika syndrome for pediatric clinicians.
        JAMA Pediatr. 2017; 171: 288-295
        • Niemeyer B.
        • Hollanda R.
        • Muniz B.
        • Marchiori E.
        What we can find beyond the classic neuroimaging findings of congenital Zika virus syndrome?.
        Eur. Neurol. 2020; 83: 17-24
        • Moessinger A.C.
        Fetal akinesia deformation sequence: an animal model.
        An. Pediatr. 1983; 72: 857-863
        • Ravenscroft G.
        • Sollis E.
        • CharlesAK
        • et al.
        Fetal akinesia: review of the genetics of the neuromuscular causes.
        J. Med. Genet. 2011; 48: 793-801
        • Sawatzky B.
        • Jones T.
        • Miller R.
        • Noureai H.
        The relationship between joint surgery and quality of life in adults with arthrogryposis: an international study.
        Am. J. Med. Genet. C. 2019; 181C: 469-473
        • Murphy O.C.
        • Messacar K.
        • Benson L.
        • et al.
        Acute flaccid myelitis: cause, diagnosis, and management.
        Lancet. 2021; 397: 334-346