Sleep architecture in neonatal and infantile onset epilepsies in the first six months of life: A scoping review

Sangeeta Jethwa, Ronit M. Pressler, Didem Kaya, Alexandre N. Datta

PII: S1090-3798(22)00149-0
DOI: https://doi.org/10.1016/j.ejpn.2022.11.004
Reference: YEJPN 3006

To appear in: European Journal of Paediatric Neurology

Received Date: 29 April 2022
Revised Date: 26 September 2022
Accepted Date: 6 November 2022

Please cite this article as: Jethwa S, Pressler RM, Kaya D, Datta AN, Sleep architecture in neonatal and infantile onset epilepsies in the first six months of life: A scoping review, European Journal of Paediatric Neurology (2022), doi: https://doi.org/10.1016/j.ejpn.2022.11.004.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Ltd on behalf of European Paediatric Neurology Society.
Sleep architecture in neonatal and infantile onset epilepsies in the first six months of life: A Scoping Review

Sangeeta Jethwa¹, Ronit M. Pressler², Didem Kaya³, Alexandre N. Datta¹

¹ University Children’s Hospital, Basel, Switzerland; ² Great Ormond Street Hospital for Children, London, UK; ³ Acibadem University School of Medicine, Istanbul, Turkey

Correspondence: Dr Sangeeta Jethwa, Department of Paediatric Neurology and Developmental Medicine, UKBB, Spitalstrasse 33, 4056 Basel, Switzerland
sangeeta.jethwa@gmail.com

Abstract

Aim

Epilepsy occurs in approximately 80 per 100,000 infants in the first year of life, ranging in severity from self-limited and likely to spontaneously resolve, to severe developmental and epileptic encephalopathies. Sleep plays a key role in early brain development and the reciprocal relationship between sleep and seizures is not yet fully understood, particularly in young children. We conducted a Scoping Review to synthesise current knowledge of sleep architecture in neonates and infants with epilepsy.

Method

Peer-reviewed publications from 2005 to 2022 describing sleep architecture in infants up to six months of age with unprovoked seizures were included. The analysis set was derived from EMBASE, Web of Science and PubMed using key terms “sleep, epilepsy and infant” and related descriptors. Inclusion criteria were prospectively described in a Scoping Review protocol. Sleep architecture was assessed as macro- and micro-structural elements.

Results

21 publications were included in the qualitative analysis. In self-limited familial and genetic epilepsy, sleep macrostructure was generally preserved. In DEEs and in epileptic encephalopathies of genetic or structural aetiology, sleep architecture was significantly disrupted.

Interpretation

Early identification of infants with epilepsy is important to ensure early and effective treatment. In the DEE spectrum, sleep architecture is significantly impacted, and abnormal sleep architecture may be associated with compromised developmental outcome. Further research is needed to identify the sequence of events in abnormal brain development, epilepsy and sleep disruption and potentially help to predict the course of epilepsy towards a self-limited epilepsy versus a DEE.
1.0 Introduction

1.1 The structure and importance of sleep

Sleep is a highly active process. The large amount of sleep during periods of rapid brain growth, connectivity and synaptic plasticity suggests an important role for sleep in early brain development1-3. Changes in sleep architecture from pre-term infant to childhood, reflect the ongoing development of brain networks and the emergence of different sleep states is one of the most significant aspects of early brain maturation in infancy4.

Sleep occurs in cycles: in the first 3 months of life sleep cycles consist of active sleep, later developing to Rapid Eye Movement (REM) sleep, and quiet sleep, later NREM sleep5. Onset of sleep occurs during active sleep. At term, in an ultradian rhythm of 3 hours, these sleep cycles are interrupted by a wakefulness phase with feeding3. After 3 months of age, babies fall asleep in NREM sleep and end their sleep cycle during a REM period. Ultradian rhythm is progressively replaced by circadian rhythm4,6. NREM is composed of sleep stages N1, N2 and N3 with progressive sleep depth characterised by increasing amounts of slow wave activity. REM sleep is faster, desynchronised activity, like wakefulness7. Both NREM and REM are thought to play an important role in brain development2,8.

Sleep architecture is composed of macro and microstructural elements, see Table 1

| Table 1 |
|--------------------|-----------------|
| **Macrostructure9-11.** | **Microstructure12-14** |
| Total sleep time | Dynamics of slow wave activity |
| Proportion of REM and NREM sleep | Number and morphology of sleep spindles |
| Wake after sleep onset | Cyclic alternating pattern |
| Number of completed sleep cycles |
| Sleep latency |
| Sleep efficiency |

Slow wave activity is a marker of homeostatic regulation, synaptic strength and drive for sleep11,15. The morphology of slow waves provides information about nocturnal regeneration and cortical maturation14-16 and slow wave sleep is suggested to be involved in nocturnal memory consolidation13. Decreased strength of cortical synapses during sleep due to pruning processes is represented by the declining slope of slow waves, and linked to neuronal recovery and learning capacity17.

Cyclic alternating pattern (CAP) participates in the dynamic organisation of sleep. As a marker of sleep instability, build-up and maintenance of deep sleep, it is an important element of sleep microstructure18. CAP is spontaneous periodic NREM sleep EEG activity, distinct from background EEG activity19 which provides insights into the adaptive properties of the sleeping brain13,19. Age related changes in CAP reflect biological development through childhood and adolescence and CAP may be altered in epilepsy18,20.

Studies have shown an alteration of slow wave activity and CAP in association with epilepsy, and a corresponding impairment of sleep quality.13, 16, 17, 21

1.2 Seizures and epilepsy in infants

Epilepsy occurs in approximately 80 per 100,000 infants in the first year of life22-25, ranging in severity from self-limited and likely to spontaneously resolve, to developmental and epileptic encephalopathies (DEE). DEE represent a group of severe heterogeneous disorders with developmental consequences arising directly from the effect of the genetic mutation in addition to the effect of the frequent epileptic activity on development.26

Seizures occur relatively frequently at neonatal age, in approximately 3/1000 live births27, 28. Most neonatal seizures are acute provoked seizures, secondary to hypoxic ischaemic encephalopathy (HIE), stroke, haemorrhage, or acute metabolic derangements, however 10-15\% of seizures are unprovoked, reflecting the onset of neonatal epilepsies23, 28, 29. Only 15\% of babies with neonatal seizures develop epilepsy28, 68\% of them appearing in the first year of life30.

The aetiology of epilepsy is primarily genetic (42\%), structural (41\%) due to congenital malformations, overlapping structural and genetic (9\%), or rarely due to inborn errors of metabolism23, 28, 31.

Approximately one-third of newborns with brain malformations as their primary seizure aetiology also have co-existing precipitators of symptomatic seizures, eg HIE and infection23.

Table 2 summarises epilepsies presenting in the first six months of life.
<table>
<thead>
<tr>
<th>Epilepsy</th>
<th>Identified genes and other aetiologies that have been implicated include</th>
<th>Age of onset of seizures and responsiveness to treatment</th>
<th>Characteristic seizure type type</th>
<th>Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-limited (familial) neonatal epilepsy</td>
<td>Family history or de novo mutations in KCNQ2, KCNQ3</td>
<td>Days 2-7, rarely after first 4 weeks (within days of being at term by corrected age for pre-term infants)</td>
<td>Sequential seizures (focal clonic or tonic, often with apnoea and cyanosis)</td>
<td>Normal</td>
</tr>
<tr>
<td>Self-limited (familial) neonatal infantile epilepsy</td>
<td>Family history or de novo mutations SCN2A KCNQ2</td>
<td>Day 1 to 23 months of life (mean 11 weeks, median 13 weeks)</td>
<td>Initially focal tonic features with head and eye deviation, followed by other tonic and clonic features. Some have prominent apnea and staring. Seizures vary in duration from 20 seconds to 4 minutes. Seizures with fever are rare.</td>
<td>Normal</td>
</tr>
<tr>
<td>Self-limited (familial) infantile epilepsy</td>
<td>PRRT2, KCNQ2, KCNQ3, SCN2A</td>
<td>Infantile: 3-20 months of age, peak at 6 months</td>
<td>Brief focal seizures, often occurring in clusters</td>
<td>Normal</td>
</tr>
<tr>
<td>Early infantile developmental and epileptic encephalopathy</td>
<td>PIGA, SETBP1, SIK1, SLC25A22, GLDC, AMT, Metabolic aetiologies, less often structural</td>
<td>First 2 months of life (more than half of cases have onset of seizures by 10 days of life)</td>
<td>Focal or multifocal myoclonus, focal seizures, spasms</td>
<td>Profoundly impaired Delay, often severe</td>
</tr>
<tr>
<td>(previously early myoclonic encephalopathy and Ohtahara syndrome)</td>
<td>GNAO1, ARX, DOCK7, STXBP1, CDKL5, KCNQ2, KCNT1, NECAP1, PIGA, PIGQ, SCN2A, SCN8A, SIK1, SLC25A22, SCL35A2, STXBP1, UBA5, WWOX Structural aetiologies, less often metabolic</td>
<td>First month of life (range 1-3 months)</td>
<td>Tonic seizures, sequential seizures in neonates Tonic spasms and focal seizures</td>
<td></td>
</tr>
<tr>
<td>Genetic Epilepsy with febrile seizures + (GEFS+) spectrum</td>
<td>SCN1A and SCN1B pathogenic variants Other gene variants encoding voltage-gated sodium, calcium, and potassium channels, and ligand-gated ion channels including nicotinic cholinergic receptor subunits, the γ-aminobutyric acid (GABA) A receptor subunits, and syntaxin 1B (STX1B) have also been linked to the syndrome</td>
<td>Febrile seizures in GEFS+ families may begin prior to 6 months of age unlike typical febrile seizures and persist beyond 6 years of age. Other afebrile seizure types may develop at various ages.</td>
<td>Febrile seizures, which may be generalized or focal, are mandatory for diagnosis. In addition, a variety of other generalized or focal afebrile seizures may be seen.</td>
<td>Usually normal</td>
</tr>
<tr>
<td>Infantile epileptic spasms syndrome</td>
<td>CDKL5, STXBP1, ARX, ALG13, DOCK7, DNLM1, FOXG1, GABRA1, GABRB1, GABRB3, GNAO1, GRIN1, GRIN2A, GRIN2B, IQSEC2, KCNT1, SCA2, SCN1A, SCN2A, SCN8A, SETBP1, SIK1, SLC25A22, SLC35A2, SPTAN1, ST3GAL3, STXBP1, TBC1D24, TCF4, WWOX Metabolic and structural aetiologies</td>
<td>Between 3 and 12 months of age, although later onset may occur</td>
<td>Clusters of epileptic spasms at onset</td>
<td>Normal to severe delay at intellectual disability, often delays over time</td>
</tr>
<tr>
<td>Myoclonic epilepsy in infancy</td>
<td>Unknown</td>
<td>Between 4 months and 2 years of age, peak age of 6 to 18 months</td>
<td>Myoclonic seizures, often activated by startle, noise, or touch</td>
<td>Development is normal at A minority develop cognitive delays over time</td>
</tr>
<tr>
<td>Epilepsy of infancy with migrating focal seizures</td>
<td>KCNT1; SCN2A; PLCB1, QARS, SCN1A, SCN8A, SLC25A22, TBC1D24, SLC12A5, TBC1D24, CHD2</td>
<td>First 6 months after birth (mean 3 months), later onset has been reported</td>
<td>Multifocal clonic or tonic seizures that are often subtle and associated with autonomic features</td>
<td>Severe delay</td>
</tr>
</tbody>
</table>

Terminology reflects updated 2022 ILAE Classification & Definition of Epilepsy Syndromes with Onset in Neonates and Infants.32

Table 2 Epilepsies presenting in the first six months of life.31-39
1.3 The complex and reciprocal relationship between sleep and epilepsy

Frequent seizures and high intensity of epileptic activity can disrupt sleep regulation and circadian rhythms and fragment sleep. Sleep disruption, in turn, may interfere with seizure control. Antiepileptic therapy can also contribute to sleep architecture disturbance.

Seizures are associated with adverse neurodevelopmental outcomes, however, it has yet to be established whether abnormal sleep reflects abnormal brain development, or whether abnormal sleep exacerbates pre-existing abnormal neurodevelopment.

We conducted a scoping review to systematically map research in this sensitive period of development and to help identify potential knowledge gaps and topics for further research. The more we understand about this complex interplay between sleep and epilepsy, the more precisely we can intervene to improve the lives of young children.

2.0 Material and Methods

This paper adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for scoping reviews. A scoping review protocol was created a priori (Appendix 1).

To identify relevant publications we searched MEDLINE, EMBASE and Web of Science databases with a search strategy of keywords. The main search concept combined the terms “epilepsy” AND “infant” AND “sleep” with related descriptors for each of these elements. "Epilepsy” included epilepsy, epilepsies, epileptic seizure and encephalopathy, “infant” included infant, baby, babies, child, neonate, newborn, month- old, months- old and “sleep” included sleep, wakefulness, bed, cyclic alternating pattern and polysomnography. Additional searches included the combination of “epilepsy” OR “seizure” AND “sleep” AND individual aetiologies “metabolic”, “genetic”, “infectious”, “structural”, “immune”, “porencephalic”, “tumour”, “DNET”, “ganglioma” (Appendix 2).

The original database searches were conducted on 11/5/20 and re-run on 19/12/21 to identify more recent sources.

We included case reports, case-control studies, other types of studies and reviews published from 2005 to date, meeting the following eligibility criteria: 1) Original research published in peer-reviewed journals; 2) Population with unprovoked seizures and onset of epilepsy in the first six months of life; 3) Publications providing data on sleep architecture if they gave information for at least one data variable on microstructure/microstructure of sleep as described in Table 2, even if the primary intent of the study was not focused on sleep architecture.

We excluded studies if 1) no full text study was published; 2) the publication language was not English; 3) the publication only described seizure semiology or sleep quality; 4) the primary focus was Dravet Syndrome.

The rationale for selecting the 6 month cut-off is pathophysiologial and sleep related, based on the expected peak impact of the underlying condition on sleep architecture.
Epilepsies within the first six months of life were defined according to the ILAE 2017 classification. We excluded papers exclusively describing seizure semiology and also those focused on Dravet Syndrome, because the highest seizure burden and its impact on sleep and development of patients with Dravet syndrome is after the first 6 months of life.

Title, abstract and full-text searches were screened against the inclusion criteria by one reviewer. We also hand searched grey literature and scanned relevant review articles and journal tables of content for additional references.

Final search results were exported into EndNote and duplicates manually removed. To increase consistency, two reviewers (SJ and AD) discussed the final list of publications to agree on study selection and amended the screening and data extraction plan. Disagreements were resolved through discussion.

We grouped publications by aetiology and epilepsy type. Two reviewers (SJ and AD) agreed the fields for data charting. One reviewer (SJ) extracted the data, which was then cross-checked by a second reviewer (DK), see Supplementary Information.

In line with accepted scoping review methodology, a formal risk of bias and methodological quality of data was not conducted, however, a level of evidence from 1 to 5 (1 being the highest) was assigned to each manuscript, according to the Joanna Briggs Institute recommendation (Table 3).

During the conduct of the review, we noted that the protocol was not specific enough. A post-hoc modification was made specifying that infants with provoked seizures were excluded.

<table>
<thead>
<tr>
<th>Level of evidence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inception cohort studies</td>
</tr>
<tr>
<td>1a</td>
<td>Systematic review of inception cohort studies</td>
</tr>
<tr>
<td>1b</td>
<td>Inception cohort study</td>
</tr>
<tr>
<td>2</td>
<td>Studies of all or none</td>
</tr>
<tr>
<td>2a</td>
<td>Systematic review of all or none studies</td>
</tr>
<tr>
<td>2b</td>
<td>All or none studies</td>
</tr>
<tr>
<td>3</td>
<td>Cohort studies</td>
</tr>
<tr>
<td>3a</td>
<td>Systematic review of cohort studies (or control arm of Randomised Controlled Trial (RCT))</td>
</tr>
<tr>
<td>3b</td>
<td>Cohort study (or control arm of RCT)</td>
</tr>
<tr>
<td>4</td>
<td>Case series/Case Controlled/ Historically Controlled studies</td>
</tr>
<tr>
<td>4a</td>
<td>Systematic review of Case series/Case Controlled/Historically Controlled studies</td>
</tr>
<tr>
<td>4b</td>
<td>Individual Case series/Case Controlled/Historically Controlled study</td>
</tr>
<tr>
<td>5</td>
<td>Expert Opinion and Bench Research</td>
</tr>
<tr>
<td>5a</td>
<td>Systematic review of expert opinion</td>
</tr>
<tr>
<td>5b</td>
<td>Expert consensus</td>
</tr>
<tr>
<td>5c</td>
<td>Bench research/ single expert opinion</td>
</tr>
</tbody>
</table>

Table 3 Level of evidence framework
3.0 Results

We reviewed 7237 abstracts and 561 full-text articles, duplicates were manually removed and 540 publications were excluded (Figure 2). 21 publications were included in the final analysis (Table 4).
<table>
<thead>
<tr>
<th>Manuscript</th>
<th>Description</th>
<th>Level of evidence</th>
<th>Self-limited</th>
<th>Early infantile developmental and epileptic Encephalopathy</th>
<th>Aetiology specific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nunes, 2010(^{46})</td>
<td>Review article of sleep and epilepsy in neonates. Literature review with search of PubMed database using key words “neonatal seizures” and “sleep”</td>
<td>4</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Caraballo, 2013(^{47})</td>
<td>Retrospective chart review of 38 patients with myoclonic epilepsy in infancy</td>
<td>4</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koutromanidis, 2017(^{37})</td>
<td>Review article by the ILAE Neurophysiology Task Force on the role of EEG in diagnosis and classification of the main neonatal and paediatric epilepsy syndromes</td>
<td>5</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lee, 2015(^{48})</td>
<td>Retrospective review of 66 children with non-lesional West Syndrome, comparing those with and without seizure free outcomes</td>
<td>4</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fois, 2010(^{49})</td>
<td>Literature review and personal experience of infantile spasms</td>
<td>5</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guzzetta, 2008(^{50})</td>
<td>2 year prospective study of 21 infants with West Syndrome</td>
<td>3</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fattinger, 2015(^{16})</td>
<td>Retrospective case-controlled study in 14 infants diagnosed with West syndrome, assessing slow wave sleep</td>
<td>4</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muzykewicz, 2009(^{51})</td>
<td>Retrospective chart review of 45 children with tuberous sclerosis and a history of Infantile Spasms</td>
<td>4</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spenner, 2019(^{52})</td>
<td>Retrospective single observer review of 448 sleep EEGs recorded during first two years of life in 44 patients with West syndrome</td>
<td>4</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusco, 2020(^{53})</td>
<td>Review article summarising three different scenarios in which epileptic spasms (ES) may occur</td>
<td>5</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Heinrich, 2021(^{54})</td>
<td>Retrospective case-controlled analysis of 61 infants with onset of West Syndrome between 2 and 24 months of age, treated with vigabatrin (VGB) or hormones, or both.</td>
<td>4</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Description</td>
<td>Score</td>
<td>Other Comments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>-------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gofshtein, 2021</td>
<td>Retrospective single-centre cohort study including 35 children with epileptic encephalopathy (excluding infantile spasms). Age range at onset of epilepsy ranged from 0-3 years.</td>
<td>3</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liu, 2017</td>
<td>128 term neonates with neonatal seizures followed up until 1 year old. 66 neonates evolved into EOEE (Early onset epileptic encephalopathy) the other 62 served as the non-EOEE (nEOEE=control) group. Primary causes of seizures were severe perinatal cerebral injury, congenital encephalodysplasia, and congenital metabolic diseases. Aetiology unclear in 72.4% of infants.</td>
<td>3</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Khan, 2008</td>
<td>Retrospective analysis of 58 pairs of sequential EEGs from newborns with seizures belonging to 2 historical cohorts of infants admitted to NICU. Mix of provoked and unprovoked seizures.</td>
<td>3</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carvalho, 2017</td>
<td>Case series including sleep EEG patterns in 37 infants aged < 6 months with microcephaly diagnosed with congenital Zika virus infection</td>
<td>4</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kanda, 2018</td>
<td>Retrospective review of sleep EEGs in 10 patients with microcephaly associated with Zika virus infection</td>
<td>4</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aravindhan, 2018</td>
<td>Case report of a 10-month-old with early-onset epileptic encephalopathy due to hemizygous deletion 9q33.3q34.11 involving STXBP1 and SPTAN1 genes</td>
<td>4</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serino, 2013</td>
<td>Case report of an infant with genetic variant of KCNQ2 gene and review of 15 cases from literature</td>
<td>4</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alsaleem, 2019</td>
<td>Case report of a term infant with genetic variant of KCN, multiple seizures refractory to anti-seizure medication</td>
<td>4</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bozarth, 2018</td>
<td>Case report of one infant who presented with neonatal onset epileptic encephalopathy with de novo missense variant in CACNA1C (c.4087G>A (p.V1363M))</td>
<td>4</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olson, 2012</td>
<td>Case report and review of the literature (29 publications) of CDKL5 mutations in early onset epilepsy</td>
<td>4</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author, Year</td>
<td>Description</td>
<td>Year</td>
<td>Inclusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olischar, 2012</td>
<td>aEEG tracings of 30 neonates with metabolic disorders from an international registry</td>
<td>4</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guerriero, 2017</td>
<td>Case series of 6 infants from one centre with PNPO deficiency, neonatal-onset epileptic encephalopathy with developmental delay and seizures</td>
<td>4</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmitt, 2010</td>
<td>Retrospective case review of four patients with PDE and one patient with PNPO</td>
<td>4</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melikishvili, 2020</td>
<td>Retrospective case review of three patients with de novo SCN2A mutations</td>
<td>4</td>
<td>+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4 – Overview of publications included in qualitative analysis
3.1 Results: Summary of findings

We identified 21 publications providing data relating to sleep architecture in our target population. We found no data relating to sleep architecture in non-familial self-limited neonatal epilepsy or in structural epilepsies due to paediatric tumours.

In self-limited familial and genetic epilepsy, sleep macrostructure was generally preserved. In DEEs and in epileptic encephalopathies of genetic or structural aetiology, sleep architecture was significantly disrupted.

Table 5 summarises the key findings from our data analysis.

<table>
<thead>
<tr>
<th>Type of epilepsy</th>
<th>Summary of evidence</th>
<th>Macrostructure</th>
<th>Microstructure</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-limited epilepsy</td>
<td>Level 4 and 5 evidence from 2 review articles describing self-limited familial neonatal seizures, self-limited infantile epilepsy, myoclonic epilepsy of infancy, and 1 retrospective chart review of myoclonic epilepsy of infancy.</td>
<td>Self-limited familial neonatal seizures: sleep features do not seem to be disrupted.</td>
<td>Physiological grapho-elements of sleep (vertex waves, spindles, and K-complexes) are usually absent. One study demonstrated comparable total sleep time and sleep quality in overnight recordings compared with healthy controls.</td>
<td>Among the sleep activities, the normal to borderline features of the sleep-spindle were more significantly and commonly maintained in the SF group.</td>
</tr>
<tr>
<td>Early infantile development and epileptic encephalopathy (EIDEE)</td>
<td>9 publications, primarily level 4 and 5 evidence, with one level 3 evidence source, a prospective cohort study.</td>
<td>Normal sleep patterns are absent, background is abnormal. One study demonstrated comparable total sleep time and sleep quality in overnight recordings compared with healthy controls.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early infantile epileptic encephalopathy</td>
<td>Reduced REM sleep reported, although no significant difference was observed in REM amount in nap recordings. Sleep latency is comparable between control and treated infants.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>as well as recurrence of sleep spindles after initiation of anti-convulsive treatment. Normal to borderline features of the sleep-spindle were reported to be more significantly and commonly maintained in seizure-free infants.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The physiological decrease of the slope of slow waves across the night during NREM sleep was reduced in infants with West Syndrome compared to controls.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>More typical hypsarrhythmia and loss of sleep-spindles may suggest a more severe phenotype with more affected normal cortical functions.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disorganisation of slow wave sleep (NREM N3) was an unfavourable prognostic factor for neurosensory and developmental outcome and associated with lower follow-up Intelligent Quotient (or equivalent measure).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Significant but disparate effects of treatment on sleep slow waves.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suppression burst pattern occurs in both wakefulness and sleep, in contrast to early</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetic (overlaps with EIDEE)</td>
<td>Suppression burst is associated with impaired sleep quality and lack of physiological sleep elements including sleep cycles.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early myoclonic epilepsy</td>
<td>Suppression burst is associated with impaired sleep quality and lack of physiological sleep elements including sleep cycles.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epilepsy of infancy with migrating focal seizures</td>
<td>Consistent suppression-burst pattern during sleep has been described in early myoclonic encephalopathy.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Early myoclonic epilepsy

- Suppression burst is associated with impaired sleep quality and lack of physiological sleep elements including sleep cycles.
- May have preserved sleep background rhythms at complete presentation.
- Consistent suppression-burst pattern during sleep has been described in early myoclonic encephalopathy.

Epilepsy of infancy with migrating focal seizures

- Suppression burst is associated with impaired sleep quality and lack of physiological sleep elements including sleep cycles.
- Consistent suppression-burst pattern during sleep has been described in early myoclonic encephalopathy.

Genetic (overlaps with EIDEE)

- Level 4 evidence from six case reports, often including associated literature reviews of CDKL5 deficiency disorder and KCNQ2 pathogenic variants of KCNT1, STXBP1 and SPTAN1 deletion, SCN2A and CACNA1C pathogenic variant.
- Poor wake-sleep transitions in KCNT1 and general disturbance of the sleep/wake cycle with CACNA1C mutation.
- In CDKL5 deficiency disorder, EEG at onset can be normal with background slowing and preserved sleep features.
- One infant who presented with neonatal onset epileptic encephalopathy and CACNA1C variant had a severe disturbance of sleep/wake cycle.
- STXBP1 and SPTAN1 variant: Interictal EEG showed a lack of normal organisation and complexity, and multifocal polyspike-wave during wakefulness and sleep. Following seizure cessation, improvement of sleep activity organisation and normalisation of architecture with improved continuity of background and A very discontinuous pattern during sleep evolves towards a defined burst-suppression pattern in KCNQ2.
- A very discontinuous pattern during sleep remains distinct from burst-suppression in SCN2A.
however, normal sleep architecture at 5 months of age on polysomnography.

Resolution of suppression-burst pattern was reported in KCNQ2 and CACNA1C variant.

Structural

- Level 3 evidence from two cohort studies
- Severely abnormal background pattern and absence of sleep wake cycling in the encephalopathic group of infants.
- A correlation with probable HIE and neurodevelopmental delay was also observed.

Structural: Congenital Zika Virus

- Level 4 evidence from two case series
- Abnormal background activity and abnormal sleep architecture, even in infants who had not yet developed epilepsy.
- Lack of sleep spindles and Modified hypsarrhythmia with or without burst suppression.

Inborn errors of metabolism

- Level 3 and 4 evidence, composed of the following:
 1. Review of aEEG tracings of 30 neonates from an International Registry of metabolic disorders and congenital malformations. Specific metabolic disorders include
- More infants with inborn errors of energy metabolism and peroxisomal disorders retained SWC compared with other groups.
- In one infant with pyridoxine dependent epilepsy, interictal EEG demonstrated trace alternant in sleep and a few sharp waves in the neonatal period.
- ‘Sleep disturbance’ without specification was also reported.
inborn errors of energy metabolism, hyperammonaemia, amino and organic amino acid acidaemias, peroxisomal disorders or non-ketotic hyperglycinaemia.

2. A case series of six neonates, including five pre-term, with Pyridox(am)ine 5′-Phosphate Oxidase Deficiency (PNPO) deficiency, neonatal-onset epileptic encephalopathy, developmental delay and seizures.

3. A case series of five infants, four of whom have pyridoxine dependent epilepsy and one with PNPO.
4.0 Discussion

In self-limited familial and genetic epilepsy, sleep macrostructure was generally preserved. In DEEs and in epileptic encephalopathies of genetic or structural aetiology, sleep architecture was significantly disrupted. More macrostructural than microstructural elements were reported in the articles included (Table 5).

The early identification of infants with epilepsy, is important, to ensure early and effective treatment, however the evolution from seizures to a non-reversible encephalopathy cannot be predicted. Development of children with self-limited epilepsies is usually normal (Table 2), while developmental outcomes are impaired in other forms of epilepsy. The following questions need to be addressed: Is disturbed sleep architecture a marker of abnormal brain development, or does abnormal sleep contribute to pre-existing abnormal neurodevelopment? If sleep architecture is conserved in self-limited epilepsy, how could the study of sleep play a role in helping to predict the evolution of epilepsy early in the disease process?

From the data analysed, it is not possible to infer whether sleep architecture disruption precedes epilepsy in this population, or vice versa. One could hypothesise that alterations in sleep arise rather secondary to encephalopathy, but this assumption requires additional exploration.

As a disorder of cortical network organisation, epilepsy affects brain structures involved in sleep plastic functions, such as the cortico-thalamic and hippocampal systems. Seizures or high intensity of epileptiform discharges occurring early in life do so during a critical period of activity-dependent synaptogenesis (blooming) and its regulation by elimination of extra synapses (pruning), a sign of plasticity. Early alterations of sleep could have a lasting impact on the maturation of neural networks, resulting in functional disorders. The disappearance of physiological sleep elements may reflect dysfunctional networks, particularly in structures such as the thalamus, hypothalamus and brain stem. One could envisage a ‘tipping point’ of pathophysiologic events and remodelling, beyond which the developing brain is unable to compensate. These manifest either simultaneously, or sequentially, as disruption of sleep architecture and an epilepsy that cannot spontaneously resolve.

Genetics may also influence the magnitude and appearance of sleep disruption. A genetic epilepsy either directly or through seizure activity or neurodevelopmental impact, could also impact genes involved in regulation of sleep, such as clock genes. Sleep homeostasis and circadian regulation interact on a molecular/genetic level. A high seizure or epileptic activity burden would also disrupt circadian regulation. In the population we analysed, it would be interesting to explore how the underlying pathophysiology of epilepsy impacts the evolution of ultradian to circadian rhythm, further confounding sleep changes. In infants with DEE, even with good seizure control, there is an underlying development delay due to the genetic component, which may also lead to further changes.

Cellular mechanisms that underlie the vicious cycle of sleep disturbance and seizures are yet to be fully elucidated, and the aetiology of disrupted sleep architecture is likely to be multifactorial. Epilepsy per se, through seizure activity, interictal discharges and ASM may...
play a role 41,43,75. Specific seizure characteristics, in terms of frequency, type and diurnal distribution have been described in association with sleep disturbance in older children and mostly adult patients76,77, however this information was not readily available from the publications included in the qualitative analysis.

Change of the slope of slow waves and alteration of cyclic alternating pattern, an important element of microstructure, represent biomarkers of physiological sleep and sleep protection, although we found no data relating to CAP in our population. The physiological decrease of the slope of slow waves across the night during NREM sleep was reduced in infants with West Syndrome compared to controls16. This reflects hypsarrhythmia, a loss of organised brain activity, which impairs brain development. If brain activity is disorganised, then sleep is also disorganised and nocturnal regenerative processes will be impacted. Together with sleep spindle frequency, these elements allow a quantification of the integrity of sleep. In our analysis, sleep spindles were disturbed, reduced, asynchronous or absent in infants with DEE.

Anti-seizure medication (ASM) can affect REM and NREM sleep, in particular slow wave sleep, NREM N3, both beneficially and detrimentally78. Very few drugs are licensed for use in neonates and most data relating to ASM and sleep originate from adult studies27. ASMs affect sleep architecture, some positively. Valproate may increase daytime sleepiness and slow wave sleep and decrease REM78. Levetiracetam can also enhance daytime sleepiness, but decreases slow wave sleep and REM79. Phenobarbitone also reduces REM sleep. Carbamazepine increases slow wave sleep and decreases REM sleep79. These effects appear independent of their anticonvulsant actions78. Data from adult studies with perampanel suggest an decrease in wake after sleep onset (WASO), increase of total sleep time, sleep maintenance index, duration of N3, a decrease of wake time, sleep latency and WASO, but no effect on micro-awakenings80,81.

In our analysis, there were insufficient data to provide meaningful observations related to the impact of ASM on sleep architecture.

5.0 Limitations

Our scoping review was conducted according to accepted scoping review methodology, however there are some inherent limitations.

To maximise feasibility of the review, we limited publications to the last fifteen years, accepting the possibility of excluding older publications that might yield informative data.

We assigned a level of evidence to each publication, however, in line with accepted scoping review methodology, we did not conduct a formal quality and risk of bias analysis of individual manuscripts. The level of evidence ranged from 3 to 5, reflecting the absence of randomised or even longitudinal controlled trials in this area. This may impact the robustness of conclusions from the data.

Many of the studies were not designed or focused to study sleep architecture and there is variability in the parameters used to assess sleep architecture. In some publications only aEEG was used and no polysomnography was conducted. In others only sleep wake cycling is mentioned, with few additional elements of sleep architecture (Table 1) considered.
Categorising publications by epilepsy type and aetiology allowed us to manage the data, although it is well recognised that aetiology of epilepsy may be multi-factorial\(^ {26}\).

We noted that our protocol was not specific enough at the outset. One post-hoc modification was to specify that infants with provoked seizures were excluded.

6.0 Conclusions

Sleep macrostructure is generally preserved in self-limited genetic epilepsy in the first 6 months of age. In infants with epilepsies in the DEE spectrum, sleep architecture is significantly impacted. Infants with abnormal sleep architecture may also experience compromised developmental outcomes, however a direct association is hypothetical and more likely to be multi-factorial, reflecting underlying aetiology, evolution of the disease and seizure burden. The relative contribution of each factor is difficult to tease out.

More longitudinal and well-controlled studies are needed to assess and quantify the changes in sleep architecture in this population and to characterise the individual contribution of sleep, epilepsy and ASM in this vicious cycle of disruption. Additional insights may also provide opportunities for biomarkers, enabling earlier interventions and therapeutic progress for this patient population.

Further research could also help in elucidating the sequence of events of abnormal brain development, epilepsy and sleep disruption and potentially contribute to understanding the likelihood of epilepsy evolution towards a self-limited condition, or a DEE.

Funding source

None

Author Contributions

Dr Jethwa designed the scoping review protocol, conducted literature searches, reviewed publications, extracted data, prepared the qualitative analysis and drafted the initial manuscript.

Dr Datta conceptualised and designed the scoping review, reviewed the final list of publications for analysis and reviewed and revised the manuscript.

Didem Kaya cross-checked the extracted data.

Dr Pressler reviewed and revised the manuscript and provided helpful input to the concept and data analysis.

Conflict of Interest

R Pressler has acted as an investigator for studies with UCB and Johnson & Johnson. She received consulting fees and/or honoraria from UCB, Natus and GW. Her research is supported by the National Institute of Health Research (NIHR), Biomedical Research Centre at Great Ormond Street Hospital, Cambridge Biomedical Research Centre, NIHR and GOSH Charity.
Appendices

Appendix A: Scoping Review Protocol
Appendix B: Search strategy and syntax

Supplementary Information

S1: Data extraction table

References

40. Vaughn B. Sleep and Epilepsy. *Semin Neurol.* 2004;24(3).

70. Halaszcz P. Sleep and Epilepsy Link by Plasticity. Front Neurol. 2020;11 1-25.
Highlights

• Sleep is critical for brain development
• Complex relationship exists between sleep and epilepsy
• Scoping review of sleep architecture in infants with unprovoked seizures
• In self-limited epilepsy, sleep macrostructure was preserved
• In developmental and epileptic encephalopathies, sleep architecture was significantly disrupted